Encoding Strings of Symbols
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Example 1 Source Coding (no probability)
Alphabet=A,B,C,D,E = M=5 symbols
Need b = 3 bits, even though log, M = 2.322 bits < 3 bits.
Let’s instead encode strings of length N
For n =2, the strings are AA, AB, AC, AD, AE, BA, BB, BC, etc.
N =# symbols in string # strings = 5 b = # bits # bits/symbol = b/N'
1 5 3 3
2 25 5(2°=32) 5/2=2.50
3 125 7(27=128) 7/3=2.333 >log,M=2.322
4 625 10(2°=1024) 10/4=2.50
5 3,125 12(2%=4096) 12/5=2.40
10 9,765,625 24 2.40
20 9.54 x 10" 47 2.35
30 9.31 x 10® 70 2.333
500 3.05 x 10°** 1161 2.322

Def. [y]=smallest integer > y
Note that y <[ y |<y+1

b =[log,(# strings)]= [log2 SN_’ =[N« log,5]<(N « log,5)+1

Slog25+—1— — log, 5

. b
#bits/symbol = I N e



Thus the number of bits per symbol required to encode a long string of symbols from a
given alphabet converges to the logarithm (base 2) of the size of the alphabet as the length
of the string grows without limit. Note that the convergence is not monotonic in the length
of the string, however, since strings of length 4 in our example require more bits per
symbol than strings of length 3.

Example 2 Source Coding (Huffman)

In this example the source alphabet consists of symbols S,,S,,---S,, occurring
independently with probabilities p(S,), -, p(S,, ).

Entropy of this alphabet is

d 1
H =Zp(Sk)log2———

k=1 p(Sk)

Have shown in previous lecture that for any binary prefix code for this alphabet

L=) p(S,)l,zH

M

k

—_

Though we have not shown it, it is also true that for the Huffman code, the average length
Ly always satisfies

H<L,<H+1

Suppose we encode strings of N symbols instead. For example, for N = 2, the expanded
alphabet consists of all ordered pairs of two symbols,

S1S19S1S27S1SM9S2S19'”9S2SM9”'9SMM . Let

H,, = entropy of alphabet consisting of independent N-length strings of S,,---S,, .



Lemma
H,=H+H
H, =NH

Proof (¥=2)

1
H, = ; ; p (S 795% ) log, m = (using independence)

1 1
;Zklp(sj)P(Sk)logzm+;;p(Sj)p(Sk)log2m:

1
;p(Sj)logz ‘p—(‘T)+;p(Sk)log2m=



Now apply Huffman coding to the set of all symbol strings of length N. Let the average

length of the Huffman code words for the strings of length N be called Ly (N ) . Then by
the Huffman coding theorem,

H,<L,(N)<H,+1

Using the previous lemma, we have

NH<L,(N)<NH+1

L N
H < H]E[ ) <H+— > H
Note the similarity between the results in Example 1 and Example 2.

In both cases, for long strings of symbols from a given alphabet, the number of bits per
symbol required to code the string converges to a quantity that is easily computed from
knowledge of the alphabet alone (log, A in the first example and H in the second example).
But it is greater than or equal to that quantity for any fixed length string, and in particular
for coding single symbols (N =1). Longer strings reduce the number of bits per symbol

toward the theoretical minimum.



Most Likely Head Count Sequences

Example 3

Consider a sequence of 7 independent tosses of a biased coin with p(H)= % ,p(T)= % :
. Leth, 0< A <n, be the total number of heads in the string. Then for large n, most

. : S 3n
sequences will have 4~ 3—:— , and sequences with % quite different from - arerare enough

that, for large n, we can neglect them.

Each sequence of 7 tosses with 4 heads has probability
v h n—h
(p(H)) (p(T))

: . 3n . : .
Now suppose 7 is large and, for convenience, chosen so that % = — isan Integer. It is not

3
hard to show that # = —42 is the most likely number of heads in such a sequence as well as

the mean or expected number of heads. We call any sequence of 7 tosses with 4 = 3n/4

heads a “most likely head count sequence.” Note that while a “most likely head count
sequence” has the most probable number of heads, the probability of that number of heads
may be less than 2 and the probability of any specific most likely head count sequence
may be much smaller yet. The point is that other numbers of heads are even less likely.
Each “most likely head count sequence” has probability

ps = (%) (1)

Lets relate this to H, the entropy of a single toss:

H =(%)log —3}— +(%)log —?—4 ~0.81

4

Note that



o (2 (249 (34 (14 = e

Thus in this example every most likely head count sequence is equally likely and has
probability

Purs = 27" > 27 .

It is easy to see that this result holds in general. Let p represent the probability of heads in
any sequence of n independent tosses of a (biased) coin. Again the most likely head count
sequences have ~=mnp heads, which we assume to be an integer. Each sequence of n tosses

with 4 heads has probability

p'(1-p)
and each most likely head count sequence has probability

a(1-p)

Dy =D (l - P)
Since

10g Py =nplog p+n(1-p)log(l-p) =
n(plogp+(1—p)1og(1—p))=—nH,

where H is the entropy of a single toss,
-n -n\? -1
P =27 = (2 ) 22

in general. The inequality holds because H <1 for a coin toss with any probability p. Thus
H quantifies exactly how much more likely the most likely head count sequences are than
sequences with p =1/2, all of which have probability 2.

Question Using the probabilities in Exercise 3, find the probability of a most likely head
count sequence for # = 8 and give its probability. In light of these numbers, explain why it
is more probable that 8 tosses yields a most likely head count sequence than that it yields
the most likely sequence.



A closely related approximate result holds for »,,, , the number of most likely sequences:

~ YnH
NMLH ~ 2

This is a very coarse (but useful) approximation for large n, in contrast with the previous
result for p,,, , which was exact.

n Ny 2"

4 4 9.5

8 28 90

20 15,504 76,627
100 242 x 10% 2.64x 10*
252 2.02 x 10% 3.49 x 10

Table: The exact number of most likely head count sequences and the value of 2" for
sequences of n independent tosses of a biased coin with probability of heads = % and a
corresponding value of = 0.8113.

This table (which extends up to the overflow level of my calculator) shows that for this
example N, and 2 grow similarly. But N,,, ~2" is a very coarse approximation, even

for large n, since
(Wi =2")
grows without bound as » grows, and the even the ratio
(N 127)

does not approach 1 for large n. With a bit more work, however, one can show that the
approximation satisfies the weaker condition

log N, p 1.
nH =30

One feature of the approximation is that

nH
Ny <2



for all n>1. To see why this must be so, note that for each » the set of all sequences of
heads and tails is a partition, and therefore

= Y p(a)- S o) Y (a)-

all sequences o * allmost likely head count sequences «,, all less likely sequences o/

(since every most likely sequence has probability exactly 27)

N (2‘”” ) + p(set of all less likely sequénces) =1,

SO

Nipw = (1 — p(set of all less likely sequences)) 2" <™
But ignoring the coarseness of this approximation, the results

Py = 2 = (z_n )H =27
Ny 52 =(27) <27

taken together, indicate that the most likely sequences are more probable than a sequence
with p = V2 (and therefore entropy H =1 and probability for each sequence of 27) and

fewer in number than the set of all 2" sequences by the same power laws, (2 )H and (2" )H )

respectively. The latter approximation can be viewed heuristically as if there were only 27
rather than 2 outcomes for each toss in the most likely sequences.

To see why this latter approximation might hold, let p be the probability of heads and 7 be

a large number, with the number of heads 4 = np in a most likely sequence being an
integer. Then the exact number of most likely sequences is

o)

Now we use the simplest form of Stirling’s approximation for the factorial:

k
k!z(—li)
€



for large integers k. (More accurate approximations are available, but we shall not need
them here.)

Thus

N B
e

e

e
(letting 2 = np for the most likely head count sequences)

n

n 1
(n (1 _ p))"(l—l’) (np)np (1 _ p)"(l'P) pnp

BESN

Note that this expression agrees exactly with our approximation for N,

onH :(21-1 )n _ 2p10g(1/P)+(1—P)log[ﬁ) * ) (—1—},; (le_p i |
p 1-p

Asymptotic Equipartition Theorem

The situation would be vastly simpler if the most likely head count sequences were
overwhelmingly probable, so that all the others could safely be ignored in our calculations.

This is sadly not the case, as we can see from the previous table for sequences of length,
say, 100 where the

p (set of most likely head count sequences) =
Nt * P = Nog 2™ =0.091

and the probability grows even smaller for n =252,



We can save the day by also including sequences with head counts slightly different from
np. Sequences with z~np are called typical sequences, and they are truly typical in that the

probability a sequence will have % ~npis almost 1. It turns out that including these extra
sequences does not much alter our earlier conclusions, although

p(sequence will be typical) > p(sequence will have the most likely head count) = 27

The exact statement and proof of the general result are given in the Appendix, but here is a
useful paraphrase.

Asymptotic Equipartition Theorem (Paraphrase)

Consider a sequence on n independent tosses of a possibly biased coin with probability p of
turning up heads. Let TS be the set of all typical sequences of outcomes, i.e., those in which
the 2~ np, where 4 is the number of heads. For large #,

p(sequence will be typical) ~1

p(sequence will not be typical) ~ 0

p(each typical sequence) ~ 2™

the number of typical sequences ~ 2™ <2,

In plain English, the theorem says that for large n the outcome is quite likely to be a typical
sequence, all typical sequences are about equally likely with probability of about 277, and
therefore the number of typical sequences is about 2", which is exponentially less than 2
unlessp=0or 1.

This simple outcome will be very helpful in understanding the capacity of a channel.
Exercise

Consider 100 independent tosses of a fair coin.

a) Find the average number of heads.

b) Give an estimate for the probability the number of heads will be near the average.

c¢) Give an estimate for the probability of any single sequence of tosses that has near the
average number of heads. '

10



d) Give an estimate for the total number of sequences of tosses that have near the average
number of heads.

Channel Capacity

Suppose the raw data we wish to transmit is binary. Instead of transmitting single bits, we
transmit “symbol strings” consisting of binary input strings of length p. For error

correction purposes the channel encoder assigns to each binary symbol string a codeword
of length 7 2 p . We want to argue that, despite noise in the channel, it is possible (in the

limit that p and » both become large) to transmit with negligible probability of error (after

error correction at the receiver) if (% ) < C, the channel capacity, and that it is

impossible if (% ) >C.,

Let Im be the entropy of a single bit of input to the channel and I out De the entropy of a
single bit of output.

The asymptotic equipartition theorem tells us that, for large n, there are about 2" typical
output sequences of length 7.

For a given input bit the output entropy is NV (the channel noise), so the number of typical
output codewords for each input string (due to noise) is about 2™ .

. . . N . . .
The error correction decoding scheme must assign all 2" outputs to a single input string,
so there can be at most

2 nlyy,

2nN

— 2"!(10“,—]\/) — 2nC

Input strings, i.e.,

p<nC.

11



Appendix — Careful Statement and Proof of the Asymptotic
Equipartition Theorem and Application to Source Coding

The theorem is stated here for sequences of n independent tosses of a possibly biased coin
with a probability p of heads. Let % represent the number of heads in the sequence. The
expected number of heads is /2 = np,and one can also show that this is the most likely
number of heads. In the lecture notes we defined a most likely head count sequence of
tosses as any sequence with 2 = np. In the more general theorem we want to allow for the
fact that sequences with / very near to np are almost as likely as a most likely head count
sequence and include them as well. Thus we define #ypical sequences of tosses as those in
which

|h—np|<d\/;,

and all other sequences as atypical. We no longer require that np be an integer. The
constant d > 0 characterizes the maximum deviation from the number of heads # = np in a
most likely head count sequence that we will allow in calling a sequence typical. The
constant d need not be an integer, does not vary with z, and can be chosen as we wish. If
d+/n <1 and np is an integer, the only typical sequences of tosses of length » are the most
likely head count sequences.

This definition allows odd behavior for small values of z: if #p is not an integer and d+/» is
small, there may be no typical sequences, while if d+/» is large, all sequences may be
typical. Nonetheless, for large #

(# possible values of % in typical sequences) - 2d~\n _2d 50
(total # of possible values of ) Y n Jproe

and thus for large # the typical sequences include only a vanishingly small fraction of the
possible values of 4, centered about the most likely and average value 4 = np.

The following theorem shows that for large d the atypical sequences become sufficiently
improbable they can be neglected. Also for all d > 0 and for large # all typical sequences
are about equally likely, and it gives the approximate number of typical sequences, which
is exponentially less than 2" for large n if H < 1. Understanding the proof requires some
elementary background in probability, specifically Chebyshev’s inequality.

12



Asymptotic Equipartition Theorem (AEP)

Given any choice of d >,/p(1-p), forall n>1
A) the set of all typical sequences has a probability p,,,, that is bounded below by

___p(l—;p) —1

Danrs 21— d P

B) each individual typical sequence o has a probability p(«) that is bounded above and
below by
—n(H+~—b—-

2 #) <p(a) <2_"[H_%j

where

b=dlog{p(11_p)]

C) the total number of typical sequences N, is bounded above and below by

2"(H"g(")) <N..< 2”(H+g(”))

= LVpe =

where the positive function g(n)vanishes as n—  as L

N

Part A gives a lower bound on 2, ., the probability of the set of all typical sequences,
while part B bounds the probability p(«) of each individual typical sequence « .

For part A, we can choose 4 sufficiently large in the definition of typical sequences that the
1

4d*
enough to be neglected. This bound on the probability of atypical sequences depends only

probability of the set of all atypical sequences (which is at most

) becomes small

13



on d and p and holds for all n. This result is surprising because, for p#1/2, one can show

that the fraction of all sequences that are atypical approaches 1 as » — «. Nonetheless their
total probability becomes negligibly small for large d.

Part B shows that, to a certain approximation, every typical sequence has a probability of
about 27" for large n. This is reflected in the name of the theorem, where “Asymptotic”
refers to the limit as # — « and “Equipartition” refers to the fact that all typical sequences
are, to a coarse approximation, equally likely. One consequence of part B is that, given any
error margin & >0, no matter how small, there is a value of N, such that every typical

sequence ¢« has probability in the range

2—n(H+£) < p(a) < 2—n(H—e)
forall n>N,. (In fact, N, =(b/¢)".)

Each typical sequence becomes exponentially unlikely as n - o (provided p =0 or 1). The
probability bounds in part B are useful but quite coarse n that they only guarantee

2—1;«/— Prs . zbf

2—nH -

where the lower bound goes to zero and the upper bound to infinity as n - «. They do
guarantee, however, that

log pyg 1
_nH n—>o

Part C gives a similarly coarse bound on the number of typical sequences. It implies that,
given any error margin & >0, no matter how small, there is a value of N, such that the

number of typical sequences N, satisfies
2n(H—e) SNTS S2n(H+a)

whenever » > N,. They also guarantee that

log N, 1
nH now

14



Proof
A) p(sequence is atypical) = p(!h ~np|2dn ) <
(using the Chebyshev inequality and the fact that the variance of % is np(1-p))

np(1-p) _r(1-p)
d’n d

B) Each sequence with 4 heads has probability

p()=p"(1-p)"".
log p(h) =hlog p+(n—h)log(1- p)

For each typical sequence,

np—d\/;<h<np+d\/;.
n(l—p)—dﬁ<n—h<n(1—p)+dﬁ.

Since log p<0 and log(1- p) <0, the probability p(a) for any typical sequence « satisfies

(np+d/n )log p+(n(1- p)+d/n )log (1~ p) < log p () <
(np—d\/r?)logp+(n(1-p)—d\/2)1og(1—p)

ie.,

n(plog p+(1-p)log(1- p))+d-/nlog(p(1- p)) <log p(&) <
n(plogp+(1-p)log(1- p))-d-nlog(p(1-p)),

where log p(1-p) <0, i.e.,

_nH+dx/Zlog(p(1——p))<logp(a)<—nH—d\/;10g(p(1—p)),

15



1.e.,

b

2_"(“@) <p(a)< 2_"( ¥

where
1
b=-dlog(p(l- =dlog| —/——
( ( p)) (p(l_p)J
C) From part A)
1 p(l—p)< t of typical = <1
—d—z_p(se of typica sequences)— Z P(ak)— .

all typical sequences oy,

Using the bounds on p(e,) from part B,

L

1.e.,
(1_ p(il - p)jzn(y--}n-) _ ( d? - 1;(21— p)]zn(H——n] N < zn(zﬂ_ﬁ]’
1.e.,
N IR G R L)
Choosing
g(n)=%+ log— ;”El_p) )

16



we see that g(n) vanishes as b/+/n for large n and

2”(H‘g(”)) <N..< 2”(”*8(”))

s —

Exercise

Consider a sequence of 10,000 tosses of a fair coin. Please answer each part by giving
relevant formulas and then give numerical values.

a) What is the expected number of heads?

b) Give a lower bound on the probability the number of heads differs from the value you
found above by less than 1% of the number of tosses.

¢) Give an estimate and give upper and lower bounds for the probability of any single
sequence of 10,000 tosses where the number of heads differs from the value you found in
part a) by less than 1% of the number of tosses. |

d) Give an estimate and give upper and lower bounds on the total number of sequences of
heads and tails in which the total number of heads differs from the value you found in part
a) by less than 1% of the number of tosses.

Exercise

In this more theoretical exercise you will show that the assumptions in the Asymptotic
Equipartition Theorem can be weakened and that its conclusions can be made somewhat
stronger at various points.

a) Show that part B of the theorem actually holds for any d >0, not just for d > ./ r(1-p) as
stated. |

b) Show that part B of the theorem actually gives a tighter bound with b replaced by

p

(1-»)

b'=d <b

log

17



¢) If you are familiar with the central limit theorem, use it to show that for large » the
lower bound in part A of the theorem can be replaced by the following bound, which is

much tighter for large d,
im p, g 21 _\/z e 2707
n—>w0 w

d) Show that the changes in parts b) and ¢) above imply that in part C of the theorem, g(r)
can be replaced by g(») which vanishes as » —w as b'//n .

In many applications the details of the Asymptotic Equipartition Theorem are not really
important. The most useful features are captured in the following simplified corollary.

Corollary to Asymptotic Equipartition Theorem

Given any arbitrarily small choice of margin of tolerance ¢ >0,

A) there is a value @, such that forany d >2d__ ,
Pairs 21-¢
B) for any choice of d > /p(1-p) there is a value of Ay, (d »E ) such that

2—-n(H+e) < p(a) < 2—n(H—e)

for all n>n, (d,e)
C) for any choice of d >d_,, there is a value of »__ such that

2n(H—e) < NTS < 2n(H+e)
forall n>n, (d,e).

18



Proof of Corollary

A) We require
1-—
1—p(d2p)21—g
1—
<200
d. > p(l—p)
min — 8
B) We require
—<¢
n

2 2
nzb—2=d—zlog2 ——1———]
& ¢ r(1-p)

[t

C) Since part C uses results from parts A and B, we require both d>d_ , n>n

min ? min *

Source Coding Revisited

The Asymptotic Equipartition Theorem gives us another view of the source coding
problem that does not rely on Huffman coding, the Kraft inequality or the Gibbs inequality.
We will state it here only for alphabets with two symbols, 0 and 1, though it holds for
sequences of symbols chosen from any alphabet. The essential idea is that there are only
about 2" typical sequences, which only require about nH bits to code.
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Consider sequences of # symbols, each chosen independently from an alphabet S, S, with
probabilities

The alphabet has entropy

1 1
H=plog—+(1-p)log <1bit

There are 2" possible sequences, and it would take # bits to code them all (say by
replacing S, by 0 and s, by 1). Nonetheless, for any small error margin 6 > 0, the AEP

shows that if » is sufficiently large we can encode these strings with a code having an
average number of bits

I<n(H+5)

1
Recall that H <1 if p# 5 Since d can be arbitrarily small, we can find a code with

average length
[<n (H +0 ) <n

1
for any pia.

(H+e

Using the corollary to the AEP, there are at most 2"+ typical sequences. We can code
them by, for example, considering them as binary sequences and coding them in sequential
order. This takes

[_n(H+8ﬂSn(H+8)+l

bits, since n(H +¢) may not be an integer. We can set an additional bit equal to 1 as prefix
for each codeword to let the receiver know that it is a typical sequence and thereby know

20



the remaining codeword length is (n (H+ 8)‘{ . Thus the length of the entire codeword for
each typical sequence is

l,<n(H+¢&)+2

We encode atypical sequences in a very lazy way, since they are so improbable: replace 'S,

by Oand S; by 1 and add a zero at the beginning to let the receiver know the sequence is

atypical and thereby that the codeword length is Zazyp =n+1,

Note that this is not a prefix code, but it is uniquely decipherable provided there are no
transmission or framing errors.

The average length of this code is

= > e p(e,)+ X Ha)p(a)s<

typical sequences « atypical sequences «
Yp: q m 7

| n(H+&)+2]p(all TS)+(n+1)(1- p(all TS)) <

[n(H+e)+2](1)+(n+1)e=

n(H+25)+2+g=n[H+25+—(3+—8)j

Since we can choose & as small as we wish, we can choose it sufficiently small that

(2+¢

N’

26+ <o

for n sufficiently large, so the average codeword length / is bounded by

I<n(H+56)
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This extremely elementary coding scheme works only because the number of typical

1
sequences is about 2" <2" for P # Ix (and thus A < 1) and yet typical sequences are

(for sufficiently large d) overwhelmingly the most probable ones.
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