Chapter 5

Probability

We have been considering the model of Figure 5.1, an information handling system in which symbols from an input are encoded into bits, which are then sent across a channel to a receiver and get decoded back into symbols. In earlier chapters of these notes we have looked at various components in this model. Now we return to the source and model it more fully, in terms of probability distributions.

![Figure 5.1: Communication system](image)

5.1 Sources

A source provides a symbol or a sequence of symbols, selected from some set. The selection process might be an experiment, such as flipping a coin or rolling dice. Or it might be the observation of actions not caused by the observer. Or the sequence of symbols could be from a representation of some object, such as characters from text, or pixels from an image.

We consider only cases with a finite number of symbols to choose from, where the symbols are both mutually exclusive (only one can be chosen at a time) and exhaustive (one is actually chosen). Each choice constitutes an outcome. If we want to trace the sequence of outcomes, and the information that travels with them from the input to the output, we need to be able to say what the outcome is.

If we know the outcome, we have a perfectly good way of denoting it. We can simply name the symbol chosen, and ignore all the rest of the symbols, which were not chosen. But what if we do not yet know the outcome, or are uncertain to any degree? How are we supposed to express our state of knowledge if there is
uncertainty? This is where the mathematics of probability is useful.

To illustrate these ideas, consider the characteristics of MIT students. The official report\(^1\) of the number of MIT students in Fall 2013 includes the data in Table 5.1, illustrated in the diagram\(^2\) of Figure 5.2.

<table>
<thead>
<tr>
<th></th>
<th>Students</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshmen</td>
<td>1,118</td>
<td>507</td>
<td>611</td>
</tr>
<tr>
<td>Undergraduates</td>
<td>4,528</td>
<td>2,041</td>
<td>2,487</td>
</tr>
<tr>
<td>Graduate Students</td>
<td>6,773</td>
<td>2,121</td>
<td>4,652</td>
</tr>
<tr>
<td>Total Students</td>
<td>11,301</td>
<td>4,162</td>
<td>7,139</td>
</tr>
</tbody>
</table>

Table 5.1: MIT student count, Fall 2013 (Students and Women reported; Men calculated)

Figure 5.2: A diagram of MIT student data, with areas that could be (but are not) proportional to the sizes of the subpopulations. Note that this diagram assumes all freshmen are undergraduates, no student can be both an undergraduate and a graduate student, and each student is either a man or a woman but not both.

Suppose an MIT freshman is selected (the symbol being chosen is one student, and the set of possible symbols is the 1,118 freshmen), and you are not told who it is. You wonder whether it is a woman or a man. Of course if you knew the identity of the student selected, you would know the gender. But if not, what could you say?

Note that 45\% of the Fall 2013 freshmen (507/1118) are women. This is a fact, or a statistic, which may or may not represent the likelihood the freshman chosen is a woman. If you had reason to believe that all freshmen were equally likely to be chosen, you might decide that the probability of it being a woman is 45\%. But what if you are told that the selection is made in the corridor of McCormick Hall (a women’s dormitory)? Statistics and probabilities both use the same mathematics, probability theory, but they are different.

\(^1\)Students: http://web.mit.edu/registrar/stats/yrpts/index.html;

\(^2\)This resembles the well known Venn diagram, but more precisely it is an Euler diagram because it does not allow impossible combinations such as a freshman who is also a graduate student, or any person being both a man and a woman.
5.2 Events

Like many branches of mathematics or science, probability theory has its own nomenclature in which a word may mean something different from or more specific than its everyday meaning. Consider the two words event, which has several everyday meanings, and outcome. Merriam-Webster’s Collegiate Dictionary includes the following definitions that are close to the technical meaning in probability theory:

- **outcome**: something that follows as a result or consequence
- **event**: a subset of the possible outcomes of an experiment

In our context, outcome is the symbol selected, whether or not it is known to us. While it is wrong to speak of the outcome of a selection that has not yet been made, it is all right to speak of the set of possible outcomes. This is the set of all symbols. As for the term event, its most common everyday meaning, which we do not want, is something that happens. Our meaning, quoted above, is listed last in the dictionary. Using the word in this unusual sense lets us define events in terms of various properties of the symbols.

Some properties are things that either do or do not apply to each symbol—for these, you can think of the set of all symbols being divided into two subsets (i.e., two events), one with that property and one without. Other properties might have values that characterize the symbols and can be used to divide the set of symbols into subsets.

When a selection is made, there are several events. One is the outcome itself—this is called a fundamental event. Others are the selection of a symbol with particular properties or particular values.

Even though, strictly speaking, an event is a set of possible outcomes, it is common in probability theory to call the experiments that produce those outcomes events.

In our example, suppose an MIT freshman is selected. The specific person chosen is the outcome. The fundamental event would be that person, or the selection of that person. Another event would be the selection of a woman (or a man). Another event might be the selection of someone from California, or someone older than 18, or someone taller than six feet. More complicated events could be considered, such as a woman from Texas, or a man from Michigan with particular SAT scores.

The special event in which any symbol at all is selected, is certain to happen. We will call this event the universal event, after the name for the corresponding concept in set theory. The special event in which no symbol is selected is called the null event. The null event cannot happen because an outcome is only defined after a selection is made.

Different events may or may not overlap, in the sense that two or more could result from the same outcome. For example, selection of a man and selection of someone with brown hair overlap. A set of events which do not overlap is said to be mutually exclusive. For example, the two events that the freshman chosen is (1) from Ohio, or (2) from California, are mutually exclusive.

A set of events may have the property that at least one of them happens when any symbol is selected. Such a set of events, at least one of which is sure to happen, is known as exhaustive. For example, the events that the freshman chosen is (1) younger than 25, or (2) older than 17, are exhaustive, but not mutually exclusive.

A set of events that are both mutually exclusive and exhaustive is known as a partition. The partition that consists of all the fundamental events will be called the fundamental partition. In our example, the two events of selecting a woman and selecting a man form a partition, and the fundamental events associated with each of the 1,118 personal selections form the fundamental partition.

A partition consisting of a small number of events, some of which may correspond to many symbols, is known as a coarse-grained partition whereas a partition with many events is a fine-grained partition. The fundamental partition is as fine-grained as any. The partition consisting of the universal event and the null event is coarse-grained.

Although we have described events as though there is always a fundamental partition, in practice this partition can be very difficult to deal with (for example think of the selection of a single atom in a drop of water or the selection of a single gene in a strand of DNA). One good feature of probability theory is
that many results don’t depend on the fundamental partition or, for that matter, whether a fundamental partition even exists.

5.3 Known Outcomes

If you know an outcome, it is straightforward to denote it. You merely specify which symbol was selected, and thereby imply which other events have occurred as a result. Of course, your knowledge may be different from another person’s knowledge; knowledge is subjective, or as some might prefer to say, “observer-dependent.”

Here is another, more complicated, way of denoting the result of a known outcome. Let \(i \) be an index for a partition, running from 0 through \(n - 1 \), where \(n \) is the number of events in the partition. Then for any particular event \(A_i \) in the partition, define the probability \(p(A_i) \) to be either 1 (if the corresponding outcome is selected) or 0 (if not selected). Within any partition, there would be exactly one \(i \) for which \(p(A_i) = 1 \) and all the other \(p(A_i) \) would be 0. This notation can be used for any partition, not just the fundamental partition, and can even be used for events that are not in a partition—if the event \(A \) happens as a result of the selection, then \(p(A) = 1 \) and otherwise \(p(A) = 0 \). It follows from this definition that \(p(\text{universal event}) = 1 \) and \(p(\text{null event}) = 0 \).

This second technique for denoting an outcome is obviously more complicated and difficult to use than the first. Why even consider it? Because it can be generalized to situations where the outcome is not known.

5.4 Unknown Outcomes

If the symbol has not yet been selected, or we do not yet know the outcome, then we cannot express our knowledge by saying what the outcome is. We can, however, say for each event \(A_i \) how likely we think that event is to happen. We will use the \(p(A_i) \) probabilities but let them have values between 0 and 1, with higher numbers representing a greater belief that this event will happen, and low numbers meaning we think it is unlikely to happen. If we are certain that some event \(A_i \) is impossible then \(p(A_i) = 0 \). If and when we learn the outcome, we can then adjust each \(p(A_i) \) to be either 0 or 1. The set of \(p(A_i) \) for a partition is known as a probability distribution.

A probability distribution is most often defined for the fundamental partition, but the definition actually works for any partition. In our example, one partition is that consisting of all men and all women; its probability distribution is the two probabilities \(p(M) \) and \(p(W) \).

Probabilities can also be assigned to events that are not in a partition. Thus \(p(VT) \) might denote the probability that the student selected is from Vermont.

Note that all these probabilities depend on our state of belief and are therefore subjective. However, they are not arbitrary, and there are rational ways of assigning them. They should be consistent with whatever we know about the various events and how they are related. Also, they must obey these fundamental axioms of probability theory:

First, no event can be less likely than impossible, so \(p(A) \geq 0 \) for all events \(A \). Similarly, you cannot have a greater belief than certainty, so \(p(A) \leq 1 \).

\[
0 \leq p(A) \leq 1 \quad (5.1)
\]

Second, consider sets of events that are related. For example, the probability \(p(NY) \) that a freshman selected is from New York must be consistent with the probabilities that that person is a male from New York \(p(M, NY) \) or a female from New York \(p(F, NY) \). If you believe every freshman from New York is either male or female, then \(p(NY) = p(M, NY) + p(F, NY) \). More generally, probability theory requires that if some event \(A \) happens only upon the occurrence of any of certain other events \(A_i \) that are mutually exclusive (for example because they are from a partition) then \(p(A) \) is the sum of the various \(p(A_i) \) of those events:

\[p(A) = \sum_i p(A_i) \] (5.2)

This implies that for any partition, since \(p(\text{universal event}) = 1 \),

\[1 = \sum_i p(A_i) \] (5.3)

where the sum is over all events in the partition.

5.5 Joint Events and Conditional Probabilities

You may be interested in the probability that the symbol chosen has two different properties. This is known as a joint probability. For example, what is the joint probability \(p(W, TX) \) that the freshman chosen is a woman from Texas? Can we find this if we know the probability that the choice is a woman, \(p(W) \), and the probability that the choice is from Texas, \(p(TX) \)?

Not in general. It might be that 45\% of the freshmen are women, and it might be that (say) 5\% of the freshmen are from Texas, but those facts alone do not guarantee that there are any women freshmen from Texas, let alone how many there might be.

However, if it is known or assumed that the two events are independent (the probability of one does not depend on whether the other event occurs), then the probability of the joint event (both happening) is the product of the probabilities of the two events. In our example, if the percentage of women among freshmen from Texas is known to be the same as the percentage of women among all freshmen, then

\[p(W, TX) = p(W)p(TX) \] (5.4)

Since it is unusual for two events to be independent, a more general formula for joint events is needed. This formula makes use of conditional probabilities, which are probabilities of one event given that another event is known to have happened. In our example, the conditional probability of the selection being a woman, given that the freshman selected is from Texas, is denoted \(p(W \mid TX) \) where the vertical bar, read “given,” separates the two events—the conditioning event on the right and the conditioned event on the left. If the two events are independent, then the probability of the conditioned event is the same as its normal, unconditional probability.

In terms of conditional probabilities, the probability of a joint event is the probability of one of the events times the probability of the other event given that the first event has happened:

\[p(A, B) = p(B)p(A \mid B) = p(A)p(B \mid A) \] (5.5)

Note that either event can be used as the conditioning event, so there are two formulas for this joint probability. Using these formulas you can calculate one of the conditional probabilities from the other, even if you don’t care about the joint probability.

This formula is known as Bayes’ Theorem, after Thomas Bayes, the eighteenth century English mathematician who first articulated it. We will use Bayes’ Theorem frequently. This theorem has remarkable generality. It is true if the two events are physically or logically related, and it is true if they are not. It is true if one event causes the other, and it is true if that is not the case. It is true whether the outcome is known or not.

Thus the probability \(p(W, TX) \) that the student chosen is a woman from Texas is the probability \(p(TX) \) that a student from Texas is chosen, times the probability \(p(W \mid TX) \) that a woman is chosen given that the choice is a Texan. It is also the probability \(P(W) \) that a woman is chosen, times the probability \(p(TX \mid W) \) that someone from Texas is chosen given that the choice is a woman.
\[p(W, TX) = p(TX)p(W | TX) \]
\[= p(W)p(TX | W) \quad (5.6) \]

As another example, consider the table of students above, and assume that one is picked from the entire student population “at random” (meaning all students are equally likely to be chosen). What is the probability \(p(M, G) \) that the choice is a male graduate student? This is a joint probability, and we can use Bayes’ Theorem \(p(M, G) = p(G)p(M | G) \).

The fundamental partition in this case is the 11,301 fundamental events in which a particular student is chosen. The sum of all these probabilities is 1, and by assumption all are equal, so each probability is 1/11301 or about 0.01%.

The probability that the selection is a graduate student \(p(G) \) is the sum of all the probabilities of the 6,773 fundamental events associated with graduate students, so \(p(G) = 6773/11301 \) or about 59.9%.

Given that the selection is a graduate student, what is the conditional probability that the choice is a man? We now look at the set of graduate students and the selection of one of them. The new fundamental partition is the 6,773 possible choices of a graduate student, and we see from the table above that 4,652 of these are men. The probabilities of this new (conditional) selection can be found as follows. The original choice was “at random” so all students were equally likely to have been selected. In particular, all graduate students were equally likely to have been selected, so the new probabilities will be the same for all 6,773. Since their sum is 1, each probability is 1/6773. The event of selecting a man is associated with 4,652 of these new fundamental events, so the conditional probability \(p(M | G) = 4652/6773 \) or about 68.7%. Therefore from Bayes’ Theorem:

\[p(M, G) = p(G) \times p(M | G) \]
\[= \frac{6773}{11301} \times \frac{4652}{6673} \]
\[= \frac{4652}{11301} \quad (5.7) \]

This problem can be approached the other way around: the probability of choosing a man is \(p(M) = 7139/11301 \) and the probability of the choice being a graduate student given that it is a man is \(p(G | M) = 4652/7139 \) so (of course the answer is the same)

\[p(M, G) = p(M) \times p(G | M) \]
\[= \frac{7139}{11301} \times \frac{4652}{7139} \]
\[= \frac{4652}{11301} \quad (5.8) \]

5.6 Averages

Suppose we are interested in knowing how tall someone selected from the set of MIT students is. If we know who is selected, we could easily discover his or her height (assuming the height of each person is known). But what if we have not learned the identity of the person selected? Can we still estimate the height?

At first it is tempting to say we know nothing about the height since we do not know who is selected. But this is clearly not true, since experience indicates that the vast majority of university students have heights between 60 inches (5 feet) and 78 inches (6 feet 6 inches), so we might feel safe in estimating the height at, say, 70 inches. At least we would not guess the height to be 86 inches.
Using probability theory we can do better. We can estimate the height without knowing the selection. And the same formula we use will work after we learn the actual selection and adjust the probabilities accordingly.

Suppose we have a partition with events A_i, each of which has some value for an attribute like height, say h_i. Then the average value (also called the **expected value**) H_{av} of this attribute would be found from the probabilities associated with each of these events as

$$H_{av} = \sum_i p(A_i)h_i \quad (5.9)$$

where the sum is over the partition (in our example, if the partition is the fundamental partition, then each $p(A_i)$ is $1/11301$).

This sort of formula can be used to find averages of many properties, such as SAT scores, weight, age, net wealth, or (as used below) the information gained by learning an outcome. It is not appropriate for properties that are not numerical, such as gender, eye color, personality, or intended scholastic major.

To use Equation 5.9 the various $p(A_i)$ must be known. If the partition is the fundamental partition, and (in our case) the height of every student is known, fine. But we would also like to use a formula like Equation 5.9 for other coarser-grained partitions, for example the partition of men and women. The question is how to interpret h_i.

The solution is to define an average height of men (and of women) in terms of heights for a finer grained partition such as the fundamental partition. The probability of choice i from the fundamental partition given that the choice is known to be a man is $p(A_i \mid M)$. This is, from Bayes’ Theorem,

$$p(A_i \mid M) = \frac{p(A_i)p(M \mid A_i)}{p(M)} \quad (5.10)$$

where $p(M \mid A_i)$ is particularly simple—it is either 1 or 0 depending on whether freshman i is a man or a woman. Then the average height of male students is

$$H_{av}(M) = \sum_i p(A_i \mid M)h_i \quad (5.11)$$

and similarly for the women,

$$H_{av}(W) = \sum_i p(A_i \mid W)h_i \quad (5.12)$$

Then the average height of all students is given by a formula exactly like Equation 5.9:

$$H_{av} = p(M)H_{av}(M) + p(W)H_{av}(W) \quad (5.13)$$

These formulas for averages are valid if all $p(A_i)$ for the partition in question are equal (e.g., if a student is chosen “at random”). But they are more general—they are also valid for the probability distribution $p(A_i)$ of any partition.

One thing to watch out for in Equation 5.10 is the case where one of the events has probability equal to zero, e.g., if there did not happen to be any men so $p(M) = 0$. In such cases it is sometimes necessary to reason through the logical result. In this case $p(A_i \mid M)$ can be any value, since “given the selection is a man” is a logical contradiction. So then $H_{av}(M)$ is indeterminate, but that does not affect H_{av} because it gets multiplied by $p(M)$ in Equation 5.13.

5.7 Information

We want to express quantitatively the information we have or lack about the choice of symbol. After we learn the outcome, we have no uncertainty about the symbol chosen or about its various properties, and
5.7 Information

which events might have happened as a result of this selection. However, before the selection is made or at least before we know the outcome, we have some uncertainty. How much?

After we learn the outcome, the information we now have could be told to another by specifying the symbol chosen. If there are two possible symbols (such as heads or tails of a coin flip) then a single bit could be used for that purpose. If there are four possible events (such as the suit of a card drawn from a deck) the outcome can be expressed in two bits. More generally, if there are \(n \) possible outcomes then \(\log_2 n \) bits are needed.

The notion here is that the amount of information we learn upon hearing the outcome is the minimum number of bits that could have been used to tell us, i.e., to specify the symbol. This approach has some merit but there are two problems.

First, an actual specification of one symbol by means of a sequence of bits requires an integral number of bits. What if the number of symbols is not an integral power of two? For a single selection, there may not be much that can be done, but if the source makes repeated selections and these are all to be specified, they can be grouped together to recover the fractional bits. For example if there are five possible symbols, then three bits would be needed for a single symbol, but the 25 possible combinations of two symbols could be communicated with five bits rather than six, and the 125 combinations of three symbols could get by with seven bits (2.33 bits per symbol). This is not much greater than \(\log_2(5) \) which is 2.32 bits. We would like our definition of information to apply even if we group symbols in a sequence. In other words, we need to deal with fractional bits.

Second, different events may have different likelihoods of being selected. This may be inherent in the experiment or in our choice of a partition. We may know that our dice are loaded, or, as in the game of blackjack, we may want to use a partition where all face cards are grouped together. Or perhaps we already know the result (one \(p(A_i) \) equals 1 and all others equal 0), so no further information is gained. Our definition of information should apply to all these cases.

To illustrate the second problem, consider a class of 32 students, of whom two are women and 30 are men. If one student is chosen and we want to know which one, our uncertainty is initially five bits, since that is what would be necessary to specify the outcome. If a student is chosen at random, the probability of each being chosen is \(1/32 \). The choice of student also leads to a gender event, either “woman chosen” with probability \(p(W) = 2/32 \) or “man chosen” with probability \(p(M) = 30/32 \).

How much information do we gain if we are told that the choice is a woman but not told which one? Our uncertainty is reduced from five bits to one bit (the amount necessary to specify which of the two women it was). Therefore the information we have gained is four bits. What if we are told that the choice is a man but not which one? Our uncertainty is reduced from five bits to \(\log_2(30) \) or 4.91 bits—we have learned only 0.09 bits of information.

The point here is that if we have a partition whose events have different probabilities, we learn different amounts from different outcomes. If the outcome was a likely one we learn less than if the outcome was unlikely. We showed this idea by describing each outcome in terms of the selection of an event from an underlying, fundamental partition, but the principle applies even if we don’t know about or don’t care about the fundamental partition. The information learned from outcome \(i \) is \(\log_2(1/p(A_i)) \) bits. As a special case, if \(p(A_i) = 1 \) for some \(i \), then the information learned from that outcome is 0 bits since \(\log_2(1) = 0 \); this is what we would expect because we already are certain of the outcome and cannot learn anything more.

If we want to quantify our uncertainty before learning an outcome, we cannot use the information gained by any specific outcomes, because we would not know which to use. Instead, we average over all possible outcomes, i.e., over all events in the partition with nonzero probability. The average information per outcome is found by multiplying the information, in bits, for each event \(A_i \) by \(p(A_i) \) and adding them up:

\[
I = \sum_i p(A_i) \log_2 \left(\frac{1}{p(A_i)} \right)
\]

(5.14)

This quantity, which is of fundamental importance for characterizing the information of sources, is called the **entropy** of a source. The formula applies if the probabilities are all equal and also if they are not; it
5.7 Information

applies if the outcome is known and therefore one of the probabilities is 1 and all the others 0; it works for any partition, not just the fundamental partition.

In this and other formulas for information, care must be taken with events \(A_i \) that have zero probability \(p(A_i) \). These cases can be treated as though they have a very small but nonzero probability. Yes, the logarithm \(\log_2(1/x) \) approaches infinity if its argument \(1/x \) approaches infinity, but it does so very slowly. The product \(x \log_2(1/x) \) actually approaches zero. Therefore all terms in the sum in Equation 5.14 with \(p(A_i) = 0 \) can be directly set to zero even though the formula might suggest an indeterminate result, or a calculating procedure might encounter a “divide by zero” error.

5.7.1 Information is Not Negative

The entropy of a source is the information we do not have about an unknown outcome. It is reasonable to expect that this is positive (or zero), because otherwise we might know less as a result of learning something. The formula for \(I \), Equation 5.14, guarantees this property. Each term in the summation is the product of two positive (or 0) numbers: \(p(A_i) \) is positive (or 0), and so is the logarithm because its argument, being the reciprocal of \(p(A_i) \), is greater than (or equal to) 1.

5.7.2 Two Ways to Write the Formula

Equation 5.14 is written showing the reciprocal of \(p(A_i) \) explicitly. This was done because most people find it easier to think about positive than negative numbers, and especially negative logarithms. Because

\[
\log_2 \left(\frac{1}{x} \right) = -\log_2(x) \tag{5.15}
\]

the formula for entropy can also be written with terms that are inherently negative,

\[
I = -\sum_i p(A_i) \log_2(p(A_i)) \tag{5.16}
\]

Some people will find formulas like Equation 5.16 with minus signs and negative logarithms preferable to ones like Equation 5.14 with fraction bars. Take your choice.

5.7.3 Units of Information

Like other physical quantities, information is expressed in units. The formulas above are for the number of bits. This is consistent with the use of logarithms with base 2.

Sometimes logarithms with other bases are used. Formulas like Equation 5.14 or Equation 5.16 with natural logarithms (base \(e \)) give the information in natural bits or nits. One nit is \(\log_2(e) \) bits (1.443 bits).

Other units for information are possible. Most computers deal with information eight bits at a time. A byte is equal to 8 bits.

Memory devices can handle larger amounts of data, and it is customary for metric-system prefixes to be used for approximate multiples of a thousand, million, and so forth. Because \(2^{10} \) (1024) is close to \(10^3 \) (1000), 1024 bytes is defined as a kilobyte or kB. Then 1024 kB is a megabyte or MB, and so on to gigabytes GB (\(2^{30} \) bytes or approximately \(10^9 \) bytes), terabytes TB (\(2^{40} \) bytes), petabytes PB (\(2^{50} \) bytes), exabytes EB (\(2^{60} \) bytes), and beyond.

In physical systems the information we do not have is very large, and generally entropy is expressed in Joules/Kelvin. One J/K is about \(1.045 \times 10^{23} \) bits.

5.7.4 Dimensions of Information

It is convenient to think of physical quantities as having dimensions. For example, the dimensions of velocity are length over time; velocity can be expressed in meters (a unit of length) per second (a unit of time). Numbers are dimensionless, as are probabilities and the base, argument, and result of the logarithm
function. Two quantities with different dimensions cannot be added, subtracted, or compared to see which is larger, though they can be multiplied or divided to produce products or ratios with other dimensions.

The results of algebraic derivations must be dimensionally consistent. Keeping track of dimensions during derivations is an excellent way of detecting errors early, so they can be corrected quickly and easily.

Traditional lists of physical dimensions start with a few basic ones, usually including length, time, mass, and temperature. Then dimensions of other physical quantities are expressed in terms of these. Information does not appear on such lists because it is only recently that a fundamental role for information in physics has been envisioned. Entropy in thermodynamic systems is not a basic dimension but one derived from temperature and energy, which is itself expressed in terms of mass, length, and time.

In the future information might replace temperature on the list of basic dimensions, but even if that never happens, information can and should be included in dimension analyses.

5.7.5 Examples

If a partition has two events with probabilities \(p \) and \((1 - p) \), the information in bits per symbol is

\[
I = p \log_2 \left(\frac{1}{p} \right) + (1 - p) \log_2 \left(\frac{1}{1 - p} \right) \tag{5.17}
\]

which is shown, as a function of \(p \), in Figure 5.3. It is largest (1 bit) for \(p = 0.5 \). Thus the information is a maximum when the probabilities of the two possible events are equal. Furthermore, for the entire range of probabilities between \(p = 0.4 \) and \(p = 0.6 \) the information is close to 1 bit. It is equal to 0 for \(p = 0 \) and for \(p = 1 \). This is reasonable because for these two values of \(p \) the outcome is certain, so no information is gained by learning it.

For partitions with more than two possible events the information per symbol can be higher than 1 bit. If there are \(n \) possible events the information per symbol lies between 0 and \(\log_2(n) \) bits, the maximum value being achieved when all probabilities are equal.

5.8 Efficient Source Coding

If a source has \(n \) possible symbols then a fixed-length code for it would require \(\log_2(n) \) (or the next higher integer) bits per symbol. The average information per symbol would be smaller if the symbols have significantly different probabilities. In this case, a fixed-length code would be inefficient. Is it possible to encode a stream of symbols from such a source with fewer bits on average, by using a variable-length code with fewer bits for the more probable symbols and more bits for the less probable ones?

Certainly. Morse Code is an example of a variable length code which does this quite well. There is a general procedure for constructing codes of this sort which are very efficient (in fact, they require an average of less than \(I + 1 \) bits per symbol, even if \(I \) is considerably below \(\log_2(n) \). The codes are called Huffman codes after MIT graduate David Huffman (1925–1999), and they are widely used in communication systems. See Section 5.10.
Figure 5.3: Entropy of a source with two symbols as a function of p, one of the two probabilities
5.9 Detail: Life Insurance

An example of statistics and probability in everyday life is their use in life insurance. We consider here only one-year term insurance (insurance companies are very creative in marketing more complex policies that combine aspects of insurance, savings, investment, retirement income, and tax minimization).

When you buy a life insurance policy, you pay a premium of so many dollars and, if you die during the year, your beneficiaries are paid a much larger amount. Life insurance can be thought of in many ways.

From a gambler’s perspective, you are betting that you will die and the insurance company is betting that you will live. Each of you can estimate the probability that you will die, and because probabilities are subjective, they may differ enough to make such a bet seem favorable to both parties (for example, suppose you know about a threatening medical situation and do not disclose it to the insurance company). Insurance companies use mortality tables such as Table 5.2 (shown also in Figure 5.4) for setting their rates. (Interestingly, insurance companies also sell annuities, which from a gambler’s perspective are bets the other way around—the company is betting that you will die soon, and you are betting that you will live a long time.)

Another way of thinking about life insurance is as a financial investment. Since insurance companies on average pay out less than they collect (otherwise they would go bankrupt), investors would normally do better investing in another way, for example by putting their money in a bank, depending, of course, on what rates are available.

Most people who buy life insurance, of course, do not regard it as either a bet or an investment, but rather as a safety net. They know that if they die, their income will cease and they want to provide a partial replacement for their dependents, usually children and spouses. The premium is small because the probability of death is low during the years when such a safety net is important, but the benefit in the unlikely case of death may be very important to the beneficiaries. Such a safety net may not be as important to very rich people (who can afford the loss of income), single people without dependents, or older people whose children have grown up.

Figure 5.4 and Table 5.2 show the probability of death during one year, as a function of age, for the cohort of U. S. residents born in 1988 (data from The Berkeley Mortality Database). Note that for almost all ages, males are more likely to die than females. If you were running an insurance company, would you set different life-insurance premiums for men and women? If your competitors did, you would have to. But some people argue that charging different premiums is a type of sexual discrimination that should not be permitted. Since December 21, 2012 the European Union has had gender-neutral premiums. American insurance companies point to statistics such as Table 5.2 to justify different rates. The other side of the argument is that much of the difference is due to risky behavior by some but not all men (eating poorly, drinking to excess, speeding, smoking, and even being more successful in suicide attempts due to use of more violent techniques) and that it might be fair to charge different premiums based on individual behavior patterns, but not on gender.

3 The Berkeley Mortality Database can be accessed online: http://www.demog.berkeley.edu/~bmd/states.html
5.9 Detail: Life Insurance

Figure 5.4: Probability of death during one year for U. S. residents born in 1988.

<table>
<thead>
<tr>
<th>Age</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.008969</td>
<td>0.01126</td>
</tr>
<tr>
<td>1</td>
<td>0.000727</td>
<td>0.000809</td>
</tr>
<tr>
<td>2</td>
<td>0.000384</td>
<td>0.000526</td>
</tr>
<tr>
<td>3</td>
<td>0.000323</td>
<td>0.000415</td>
</tr>
<tr>
<td>4</td>
<td>0.000222</td>
<td>0.000304</td>
</tr>
<tr>
<td>5</td>
<td>0.000212</td>
<td>0.000274</td>
</tr>
<tr>
<td>6</td>
<td>0.000182</td>
<td>0.000253</td>
</tr>
<tr>
<td>7</td>
<td>0.000142</td>
<td>0.000132</td>
</tr>
<tr>
<td>8</td>
<td>0.000172</td>
<td>0.000213</td>
</tr>
<tr>
<td>9</td>
<td>0.000152</td>
<td>0.000162</td>
</tr>
<tr>
<td>10</td>
<td>0.000142</td>
<td>0.000132</td>
</tr>
<tr>
<td>11</td>
<td>0.000142</td>
<td>0.000132</td>
</tr>
<tr>
<td>12</td>
<td>0.000152</td>
<td>0.000162</td>
</tr>
<tr>
<td>13</td>
<td>0.000142</td>
<td>0.000132</td>
</tr>
<tr>
<td>14</td>
<td>0.000162</td>
<td>0.000223</td>
</tr>
<tr>
<td>15</td>
<td>0.000172</td>
<td>0.000213</td>
</tr>
<tr>
<td>16</td>
<td>0.000202</td>
<td>0.000253</td>
</tr>
<tr>
<td>17</td>
<td>0.000263</td>
<td>0.000355</td>
</tr>
<tr>
<td>18</td>
<td>0.000306</td>
<td>0.000432</td>
</tr>
<tr>
<td>19</td>
<td>0.000324</td>
<td>0.000432</td>
</tr>
<tr>
<td>20</td>
<td>0.000386</td>
<td>0.000513</td>
</tr>
<tr>
<td>21</td>
<td>0.000426</td>
<td>0.000544</td>
</tr>
<tr>
<td>22</td>
<td>0.000466</td>
<td>0.000575</td>
</tr>
<tr>
<td>23</td>
<td>0.000516</td>
<td>0.000613</td>
</tr>
<tr>
<td>24</td>
<td>0.000566</td>
<td>0.000654</td>
</tr>
<tr>
<td>25</td>
<td>0.000616</td>
<td>0.000695</td>
</tr>
<tr>
<td>26</td>
<td>0.000666</td>
<td>0.000736</td>
</tr>
<tr>
<td>27</td>
<td>0.000716</td>
<td>0.000777</td>
</tr>
<tr>
<td>28</td>
<td>0.000766</td>
<td>0.000818</td>
</tr>
<tr>
<td>29</td>
<td>0.000816</td>
<td>0.000859</td>
</tr>
<tr>
<td>30</td>
<td>0.000866</td>
<td>0.000900</td>
</tr>
<tr>
<td>31</td>
<td>0.000916</td>
<td>0.000941</td>
</tr>
<tr>
<td>32</td>
<td>0.000966</td>
<td>0.000982</td>
</tr>
<tr>
<td>33</td>
<td>0.001016</td>
<td>0.001027</td>
</tr>
<tr>
<td>34</td>
<td>0.001066</td>
<td>0.001078</td>
</tr>
<tr>
<td>35</td>
<td>0.001116</td>
<td>0.001148</td>
</tr>
</tbody>
</table>

Table 5.2: Mortality table for U. S. residents born in 1988
5.10 Detail: Efficient Source Code

Sometimes source coding and compression for communication systems of the sort shown in Figure 5.1 are done together (it is an open question whether there are practical benefits to combining source and channel coding). For sources with a finite number of symbols, but with unequal probabilities of appearing in the input stream, there is an elegant, simple technique for source coding with minimum redundancy.

5.10.1 Example of a Finite Source

Consider a source which generates symbols which are MIT letter grades, with possible values A, B, C, D, and F. You are asked to design a system which can transmit a stream of such grades, produced at the rate of one symbol per second, over a communications channel that can only carry two boolean digits, each 0 or 1, per second.

First, assume nothing about the grade distribution. To transmit each symbol separately, you must encode each as a sequence of bits (boolean digits). Using 7-bit ASCII code is wasteful; we have only five symbols, and ASCII can handle 128. Since there are only five possible values, the grades can be coded in three bits per symbol. But the channel can only process two bits per second.

However, three bits is more than needed. The entropy, assuming there is no information about the probabilities, is at most \(\log_2(5) = 2.32 \) bits. This is also \(\sum p(A_i) \log_2(1/p(A_i)) \) where there are five such \(p_i \), each equal to 1/5. Why did we need three bits in the first case? Because we had no way of transmitting a partial bit. To do better, we can use “block coding.” We group the symbols in blocks of, say, three. The information in each block is three times the information per symbol, or 6.97 bits. Thus a block can be transmitted using 7 boolean bits (there are 125 distinct sequences of three grades and 128 possible patterns available in 7 bits). Of course we also need a way of signifying the end, and a way of saying that the final word transmitted has only one valid grade (or two), not three.

But this is still too many bits per second for the channel to handle. So let’s look at the probability distribution of the symbols. In a typical “B-centered” MIT course with good students, the grade distribution might be as shown in Table 5.3. Assuming this as a probability distribution, what is the information per symbol and what is the average information per symbol? This calculation is shown in Table 5.4. The information per symbol is 1.840 bits. Since this is less than two bits perhaps the symbols can be encoded to use this channel.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Information</th>
<th>Contribution to average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.25</td>
<td>2 bits</td>
<td>0.5 bits</td>
</tr>
<tr>
<td>B</td>
<td>0.50</td>
<td>1 bit</td>
<td>0.5 bits</td>
</tr>
<tr>
<td>C</td>
<td>0.125</td>
<td>3 bits</td>
<td>0.375 bits</td>
</tr>
<tr>
<td>D</td>
<td>0.10</td>
<td>3.32 bits</td>
<td>0.332 bits</td>
</tr>
<tr>
<td>F</td>
<td>0.025</td>
<td>5.32 bits</td>
<td>0.133 bits</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td></td>
<td>1.840 bits</td>
</tr>
</tbody>
</table>

Table 5.3: Distribution of grades for a typical MIT course

Table 5.4: Information distribution for grades in an average MIT distribution

4 Boolean digits, or binary digits, are usually called “bits.” The word “bit” also refers to a unit of information. When a boolean digit carries exactly one bit of information there may be no confusion. But inefficient codes or redundant codes may have boolean digit sequences that are longer than the minimum and therefore carry less than one bit of information per bit. This same confusion attends other units of measure, for example meter, second, etc.
5.10.2 Huffman Code

David A. Huffman (August 9, 1925–October 6, 1999) was a graduate student at MIT. To solve a homework assignment for a course he was taking from Prof. Robert M. Fano, he devised a way of encoding symbols with different probabilities, with minimum redundancy and without special symbol frames, and hence most compactly. He described it in Proceedings of the IRE, September 1962. His algorithm is very simple. The objective is to come up with a “codebook” (a string of bits for each symbol) so that the average code length is minimized. Presumably infrequent symbols would get long codes, and common symbols short codes, just like in Morse code. The algorithm is as follows (you can follow along by referring to Table 5.5):

1. **Initialize:** Let the partial code for each symbol initially be the empty bit string. Define corresponding to each symbol a “symbol-set,” with just that one symbol in it, and a probability equal to the probability of that symbol.

2. **Loop-test:** If there is exactly one symbol-set (its probability must be 1) you are done. The codebook consists of the codes associated with each of the symbols in that symbol-set.

3. **Loop-action:** If there are two or more symbol-sets, take the two with the lowest probabilities (in case of a tie, choose any two). Prepend the codes for those in one symbol-set with 0, and the other with 1. Define a new symbol-set which is the union of the two symbol-sets just processed, with probability equal to the sum of the two probabilities. Replace the two symbol-sets with the new one. The number of symbol-sets is thereby reduced by one. Repeat this loop, including the loop test, until only one symbol-set remains.

Note that this procedure generally produces a variable-length code. If there are \(n \) distinct symbols, at least two of them have codes with the maximum length.

For our example, we start out with five symbol-sets, and reduce the number of symbol-sets by one each step, until we are left with just one. The four steps are shown in Table 5.5, and the final codebook in Table 5.6.

Start: (A='-' p=0.25) (B='-' p=0.5) (C='-' p=0.125) (D='-' p=0.1) (F='-' p=0.025)
Next: (A='-' p=0.25) (B='-' p=0.5) (C='-' p=0.125) (D='1' F='0' p=0.125)
Next: (A='-' p=0.25) (B='-' p=0.5) (C='1' D='01' F='00' p=0.25)
Next: (B='-' p=0.5) (A='1' C='01' D='001' F='000' p=0.5)
Final: (B='1' A='01' C='001' D='0001' F='0000' p=1.0)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0 0 1</td>
</tr>
<tr>
<td>D</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>F</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

Table 5.5: Huffman coding for MIT course grade distribution, where ‘-’ means the empty bit string

Table 5.6: Huffman Codebook for typical MIT grade distribution

Is this code really compact? The most frequent symbol (B) is given the shortest code and the least frequent symbols (D and F) the longest codes, so on average the number of bits needed for an input stream which obeys the assumed probability distribution is indeed short, as shown in Table 5.7.

Compare this table with the earlier table of information content, Table 5.4. Note that the average coded length per symbol, 1.875 bits, is greater than the information per symbol, which is 1.840 bits. This is because the symbols D and F cannot be encoded in fractional bits. If a block of several symbols were considered...
5.10 Detail: Efficient Source Code

Table 5.7: Huffman coding of typical MIT grade distribution

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Code</th>
<th>Probability</th>
<th>Code length</th>
<th>Contribution to average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>01</td>
<td>0.25</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0.50</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>C</td>
<td>001</td>
<td>0.125</td>
<td>3</td>
<td>0.375</td>
</tr>
<tr>
<td>D</td>
<td>0001</td>
<td>0.1</td>
<td>3.32</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>0000</td>
<td>0.025</td>
<td>5.32</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.875 bits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Together, the average length of the Huffman code could be closer to the actual information per symbol, but not below it.

The channel can handle two bits per second. By using this code, you can transmit over the channel slightly more than one symbol per second on average. You can achieve your design objective.

There are at least six practical things to consider about Huffman codes:

- A burst of D or F grades might occur. It is necessary for the encoder to store these bits until the channel can catch up. How big a buffer is needed for this storage? What will happen if the buffer overflows?

- The output may be delayed because of a buffer backup. The time between an input and the associated output is called the **latency**. For interactive systems you want to keep latency low. The number of bits processed per second, the **throughput**, is more important in other applications that are not interactive.

- The output will not occur at regularly spaced intervals, because of delays caused by bursts. In some real-time applications like audio, this may be important.

- What if we are wrong in our presumed probability distributions? One large course might give fewer A and B grades and more C and D. Our coding would be inefficient, and there might be buffer overflow.

- The decoder needs to know how to break the stream of bits into individual codes. The rule in this case is, break after 1 or after 0000, whichever comes first. However, there are many possible Huffman codes, corresponding to different choices for prepending in step 3 of the algorithm above. Most do not have such simple rules. It can be hard (although it is always possible) to know where the inter-symbol breaks should be inferred.

- The codebook itself must be given, in advance, to both the encoder and decoder. This might be done by transmitting the codebook over the channel once.

5.10.3 Another Example

Freshmen at MIT are on a “pass/no-record” system during their first semester on campus. Grades of A, B, and C are reported on transcripts as P (pass), and D and F are not reported (for our purposes we will designate this as no-record, N). Let’s design a system to send these P and N symbols to a printer at the fastest average rate. Without considering probabilities, 1 bit per symbol is needed. But the probabilities (assuming the typical MIT grade distribution in Table 5.3) are $p(P) = p(A) + p(B) + p(C) = 0.875$, and $p(N) = p(D) + p(F) = 0.125$. The information per symbol is therefore not 1 bit but only $0.875 \times \log_2(1/0.875) + 0.125 \times \log_2(1/0.125) = 0.544$ bits. Huffman coding on single symbols does not help. We need to take groups of bits together. For example eleven grades as a block would have 5.98 bits of information and could in principle be encoded to require only 6 bits to be sent to the printer.