Adiabatic quantum computation (AQC) is an approach to universal quantum computation in which the entire computation is performed in the ground state of a suitably chosen Hamiltonian [1]. As such, AQC offers intrinsic protection against dephasing and dissipation [2,3]. Moreover, AQC naturally suggests a novel quantum approach to the classically intractable constrained minimization problems of the complexity class NP. Namely, by exploiting the ability of coherent quantum systems to follow adiabatically the ground state of a slowly changing Hamiltonian, AQC promises to bypass automatically the many separate local minima occurring in difficult constrained minimization problems that are responsible for the inefficiency of classical minimization algorithms. To date, most research on AQC [4-8] has focused on determining the precise extent to which it could outperform classical minimization algorithms. The tantalizing possibility remains that---at least for all practical purposes---AQC offers at least a large polynomial, and often an exponential, speedup over classical algorithms. However, it may be the case that in the same way the efficiency of many practical classical algorithms for NP problems can only be established empirically, the efficiency of AQC on large instances of classically intractable problems can only be established by building a large-scale AQC experiment.

To make feasible such a large-scale AQC experiment, we have proposed a scalable architecture for AQC based on the superconducting persistent-current (PC) qubits [9,10] already under development here at MIT. As first proposed in [11], the architecture naturally incorporates the terms present in the PC qubit Hamiltonian by exploiting the isomorphism [12] between antiferromagnetic Ising models in applied magnetic fields and the canonical NP-complete graph theory problem Max Independent Set. Such a design notably removes any need for the interqubit couplings to be varied during the computation. Moreover, since Max Independent Set remains NP-complete even when restricted to planar graphs where each vertex is connected to no more than 3 others by edges, a scalable programmable architecture capable of posing any problem in the class NP may simply take the form of a 2D, hexagonal, square, or triangular lattice of qubits. Finally, the latest version of the architecture [13] permits interqubit couplings to be limited to nearest-neighbors and qubit measurements to be inefficient.

REFERENCES: