NOVA On-Line CMP Metrology and Its Use for Lot-to-Lot Process Control

Taber H. Smith, Duane S. Boning

MIT

Simon J. Fang, Jerry A. Stefani,
Greg B. Shinn, and Stephanie W. Butler

Texas Instruments
Goals of the NOVA/CMP Project

- Assess the Quality of the NOVA On-Line Metrology Tool
 - Gauge Study
 - Failure Rate
 - Long-Term Stability

- Implement Basic Run-by-Run Process Control
Gauge Study Performed to Measure ...

- Variability due to measurement.
- Variability due to pattern recognition.
- Variability due to software wafer alignment.
- Variability due to loading.
- Variability due to slurry.
- Variability due to polishing.
Repeatability Summary

• Measurement Repeatability (Precision)
 – Standard Deviation of 0.5 Ang.
 – Precision metric (std/mean) of 0.006%; the spec is 0.1%.

• Pattern Recognition Repeatability
 – Standard Deviation of 4.3 Ang.
 – Precision metric (std/mean) of 0.05%; the spec is 0.2%.

• Software Alignment Repeatability
 – Standard Deviation of 8.1 Ang.
 – Precision metric (std/mean) of 0.09%; the spec is 0.3%.
Gauge Study Performed to Measure ...

- Variability due to measurement.
 - 0.5 Angs.
- Variability due to pattern recognition.
 - 4.3 Angs.
- Variability due to software wafer alignment.
 - 8.1 Angs.
- Variability due to loading.
 - ?
- Variability due to slurry.
 - ?
- Variability due to polishing.
 - ?

- Spread at Pre-Polish
 - 12 Angs.
- Spread due to Cleaning
 - 8 Angs.
- Spread at Post-Polish
 - 30 Angs.
- Variability due to loading+slurry+processing
 - 10 Angs.
NOVA Post-Polish Thickness (Patterned Wafers)

- **Cycle Skips**
- **Site Not Found Errors**
Pre-Clean Nova vs. Post-Clean UV1280
(Region 1, Beginning)

NOVA
83% Success Rate

UV1280
100% Success Rate

~32 Ang. Spread
200 Ang. Offset

65 NOVA Cycle Skips
3 NOVA Site-Not-Found Errors
Pre-Clean Nova vs. Post-Clean UV1280 (Region 2, After Bounds on NOVA Tightened)

NOVA
99% Success Rate

UV1280
100% Success Rate

~31 Ang. Spread
251 Ang. Offset

1 NOVA Cycle Skips
3 NOVA Site-Not-Found Errors
Pre-Clean Nova vs. Post-Clean UV1280 (Region 3, Bounds Re-opened & Algorithm Changed)

~29 Ang. Spread
190 Ang. Offset

NOVA
99.5% Success Rate

UV1280
100% Success Rate

0 NOVA Cycle Skips
1 NOVA Site-Not-Found Errors
Pre-Clean Nova vs. Post-Clean UV1280 (Polished Patterned Wafers Overall)

- NOVA: 93% Success Rate
- UV1280: 100% Success Rate

- 212 Ang. Offset
- ~30 Ang. Spread

- 66 NOVA Cycle Skips
- 7 NOVA Site-Not-Found Errors
Goals of the NOVA/CMP Project

- Assess the Quality of the NOVA On-Line Metrology Tool
 - Gauge Study
 - Failure Rate
 - Long-Term Stability

- Implement Basic Run-by-Run Process Control
Run by Run Control Experiment Plan

Blanket Pilot Wafer
- Used to monitor particles, uniformity, and to calculate the blanket wafer-level polish rate to verify MIT model.

Patterned Wafer
- NOVA meas. used to calculate EWMA and new polish time.

MIT Patterned Wafer
- Measured ex-situ.
- Used to study the planarization length over the life of a CMP pad.
Reliability Testing Summary

• 99% wafer alignment success rate
 – 1 failure in 96 wafer loads.

• 99.7% site measurement success rate
 – 7 site not found errors in 2112 measurements.

• NOVA System froze 2 times in 600 wafers over three days
 – tries to keep measuring after wafer unloads,
 – reboot takes less than 5 minutes.

• NOVA Wafer Handler Controller failed 1 time
 – restart takes about 30 seconds.
Offset Between NOVA and UV1280

• Offset = Average of (NOVA - UV1280)
• Offset at Pre-Polish
• Offset from Cleaning
• Offset at Post-Polish
• Unknown Effects
 – Higher cleaning due to surface damage is known (Discussion with Greg Hames)
 – This number seems consistent with these results
 – Need to verify this measuring pre- and post- on NOVA
 – Determine if this offset is a function of the device

 ▪ 47 Angs.
 ▪ -137 Angs.
 ▪ -212 Angs.
 ➔ -100 Angs.
EWMA Rate Estimation

- Calculate an Exponentially Weighted Moving Average (EWMA) of previously measured rates

\[Rate_{EWMA}[n] = w \cdot Rate_{Measured}[n] + (1 - w) \cdot Rate_{EWMA}[n - 1] \]

- The higher \(w \), the more recent values are weighted.
- The weight is chosen based on how noisy the process is.
EWMA Rate Estimation

Estimate the rate to determine the process time.

See T. Smith and J. Stefani TAR on Control of Metal Sputter Deposition
Controlled Average Thickness (Polished Patterned Wafers)

Lot #

Controlled Average Thickness (Polished Patterned Wafers)

MSE = 120 Ang.

Lot Break-in

MSE = 96 Ang.

After Nova Tweaked

MSE = 280 Ang.

Lot #
Uncontrolled Average Thickness (Polished Patterned Wafers)

- 2 Lot Break-in
- After Nova Tweaked
- MSE = 315 Ang.
- MSE = 315 Ang.
- MSE = 327 Ang.
Uncontrolled Average Thickness (Polished Patterned Wafers)

Lot #

MSE = 241 Ang.
MSE = 256 Ang.
MSE = 280 Ang.

4 Lot Break-in
After Nova Tweaked
Controlled Average Thickness
(5 Sites on Polished Patterned Wafers)

![Graph showing average thickness across different lots for three regions. The graph includes average MSE values for each region: MSE = 308 Ang., MSE = 280 Ang., MSE = 130 Ang.](image)
Using Pilot Wafers with SFE to Control Average Patterned Wafer Thickness

![Graph showing thickness measurements over different lots.](image)

- **4 Lot Break-in**
- **After Nova Tweaked**
- **MSE = 125 Ang.**
- **MSE = 139 Ang.**
- **MSE = 238 Ang.**
CMP Without NOVA and RbR Control

10 Minutes
Polish Look-Ahead and Pilot Wafers

30 Minutes
Clean

5 Minutes
Measure

Calculate Polish Time

Polish Lot
90 Minutes

Clean
30 Minutes

Measure
10 Minutes
(2 Wafers)

Total Time (Best Case): 2 Hours 55 Minutes
CMP *With* NOVA and RbR Control

12 Minutes

- Polish Look-Ahead and Pilot Wafers
- NOVA Measure
- Calculate Polish Time

90 Minutes

- Polish Lot
- NOVA Measure

30 Minutes

Clean

Total Time (Simplest Case): 2 Hours 6 Minutes

25% Improvement
CMP *Without* NOVA and RbR Control

10 Minutes
Polish Look-Ahead and Pilot Wafers

30 Minutes
Clean

5 Minutes
Measure

10 Minutes

Polish Lot

90 Minutes

Calculate Polish Time

Polish Lot Clean

Measure

10 Minutes

Calculate Polish Time

Rework Lot 2/24 Wafers

10/45 Minutes

Calculate Polish Time

Rework Lot Clean

Measure

10 Minutes

Total Time (2 Wafer Rework): 3 Hours 45 Minutes
Total Time (24 Wafer Rework): 4 Hours 20 Minutes
CMP *With* NOVA and RbR Control

- Polish Look-Ahead and Pilot Wafers
- NOVA Measure
- Calculate Polish Time
 - 12 Minutes

- Polish Lot
 - NOVA Measure
 - Calculate Polish Time
 - 90 Minutes

- Rework Lot
 - 2/24 Wafers
 - 10/45 Minutes

- Clean
 - 30 Minutes

Total Time (2 Wafer Rework): 2 Hours 22 Minutes (37%)
Total Time (24 Wafer Rework): 2 Hours 55 Minutes (32%)
Throughput, COO, and Waste Savings

- Throughput increases of up to 37%.
- Water and peroxide savings of up to 66%.
- Reduced Cost Of Ownership (COO) due to throughput of up to 31%.
- Reduced COO for future facilitation of up to 66%
- Reduced COO due to less ex-situ metrology tools.
COO Savings Due to Improved Quality

- Oxide Deposited = Removal + Window
- Better process control means a smaller window
- A smaller window means less deposited oxide
- Less deposition
 - Higher deposition throughput
 - Less chemical usage
 - Less waste from chamber cleans
Current Conclusions

• The precision, repeatability, and reliability of the NOVA are very good.

• Nova and UV1280 correlate within ~30 Ang.

• Simple EWMA control of patterned wafers using the NOVA results in an average thickness error of 96 Angs.

• This control is a 70% improvement of fixed-time polishing, and a 23% improvement over control using blanket pilots and sheet film equivalents.

• 25-37% increase in throughput.

• Reduced Cost Of Ownership
 – Less cleaning, higher throughput, fewer ex-situ metrology tools, and improved process control