Framework for Modeling of Pattern Dependencies in Multi-Step Cu CMP Processes

SEMICON West 2000

Tamba Tugbawa, Tae Park, Duane Boning

Massachusetts Institute of Technology
Electrical Engineering and Computer Science
Microsystems Technology Laboratories, Rm 39-567.
Motivation: Pattern Dependent Problems in Cu CMP

Cu Dishing and Oxide Erosion lead to:
- Higher line resistance.
- Surface Non-Uniformity
- Possible shorting of adjacent lines on higher metal levels.

GOALS:
- Identify the key layout dependencies of dishing and erosion.
- Predict the amount of dishing and erosion for any layout, for a given polish process.
- Design around dishing and erosion.
- Minimize dishing and erosion.
Outline

■ Model Formulation
 ❏ Modeling Approach
 ❏ The Three Intrinsic Stages in Cu CMP
 ❏ Model Parameters

■ Model Calibration
 ❏ Calibration Mask Set
 ❏ Calibration Methodology

■ A Typical Cu CMP Process

■ Summary
Modeling Approach

- Identify the **intrinsic stages** in Cu CMP.
- Construct **Removal-Rate Diagrams (RR-diagrams)** for each intrinsic stage.
- Formulate the **model equations** from the RR-diagrams.
- Develop a methodology for calibrating the model i.e. extracting model parameters (unknowns) for a given process.
The Three Intrinsic Stages in Cu CMP

Stage 1: Bulk copper removal

Stage 2: Barrier removal

Stage 3: Overpolish

Overpolish occurs due to:
- Recess caused by electroplating.
- Non-uniform removal rate across the wafer.
- Non-uniform pattern within a die (pattern meaning pattern density, line width and line space).

Oxide Erosion
Cu Dishing
Stage 1: Removal of Overburden Cu

- **Time Phases:**
 - $t_a < t_b < t_c$

- **Removal Rate Equation:**
 \[\frac{K_{Cu}}{1 - \rho_{Cu}} \]

- **Step Heights:**
 - H_{ex}: Local step height above which the pad does not contact the down area.
 - H_I:

- **Processes:**
 - **Cu up-area**
 - **Cu down-area**
Stage 3: Overpolish

- \(D_{ss} \) is steady-state Cu dishing.
- \(d_{\text{max}} \) is maximum Cu dishing.
- \(\Psi_s \) is the edge rounding factor.

\[
K_{Cu} = \frac{\Psi_s K_{ox}}{1 - \rho_{Cu}}
\]

- \(\rho_{Cu} \) is the removal rate.

Dishing Height

- \(d_{\text{max}} \) is the maximum dishing height.
- \(D_{ss} \) is the steady-state dishing height.

Cu Removal Rate

- \(K_{Cu} \) is the Cu removal rate.
- \(K_{ox} \) is the oxide removal rate.

Oxide Erosion

- \(\Delta t \) is the time difference.

- \(t_a \) is the start time.
- \(t_b \) is the steady-state time.

- \(\text{No dishing and erosion} \) when \(t_a < t_b \)

- \(\text{Cu Dishing} \) when \(t_a < t_b \)

- \(\text{Cu Dishing} \) when \(t_a < t_b \)

- \(\text{More Cu Dishing} \) when \(t_b + \Delta t > \text{steady-state time} \)
Model Parameters

- The model parameters are:
 - K_{ox}, K_{Cu}, K_b: These are blanket removal rates.
 - d_{max}, H_{ex}, Ψ_s: These are the pattern dependent parameters.
 - Planarization Length: It depends on the polish process parameters.

Ψ_s is a function of line space and polish process parameters.

- d_{max} is an increasing function of line width.
Model Parameters

\[d_{\text{max}} = f(\theta_p, l_w, l_s) \] \hspace{1cm} (Eq. 1)

OR

\[d_{\text{max}} = g(\theta_p, l_w, \rho_{Cu}) \] \hspace{1cm} (Eq. 2)

\[H_{ex} = u(\beta_p, l_w, l_s) \] \hspace{1cm} (Eq. 3)

OR

\[H_{ex} = v(\beta_p, l_w, \rho_{Cu}) \] \hspace{1cm} (Eq. 4)

\[\Psi_s = w(\alpha_p, l_s) \] \hspace{1cm} (Eq. 5)
Outline

Part 1

- Formulation of Mathematical Model
 - Modeling Approach
 - The Three Intrinsic Stages in Cu CMP
 - Model Parameters

✔ Model Calibration
 - Calibration Mask Set.
 - Calibration Methodology.

- A Typical Cu CMP Process

- Summary
Calibration Mask Set

- Wide range of pitch and density structures on M1.
- Electrical (resistance) test structures.
- Multi-level effects of M1 on M2.
Calibration Methodology

PART 1

- Measured dishing and Erosion
- Layout details
- Process details: K_{ox}, K_{Cu}, K_b, etc.

PART 2

- Estimate t_2 subject to the given constraints.

PART 3

- Estimate H_{ex} subject to the given constraints.

Initial guess PL, d_{max}, d_0, t_3 and Ψ_s

Are the dishing and erosion errors minimized?

Yes

Output: PL, d_{max}, d_0, t_3 and Ψ_s

No

Modify the initial guesses of PL_3, d_{max}, d_0, t_3, and Ψ_s
A Typical Cu CMP Process: 2 Step Polish Process

POLISH STEP 1
- Slurry 1
- Down Force 1
- Table Speed 1
- Pad 1

\[K_{Cu(1)} > K_{b(1)} > K_{ox(1)} \]

POLISH STEP 2
- Slurry 2
- Down Force 2
- Table Speed 2
- Pad 2

\[K_{Cu(2)} < K_{b(2)} < K_{ox(2)} \]

At the end point time, we might have the following extreme scenarios:

High Cu density structure:
- Overpolish Stage.
- Dishing and Erosion present.

Low Cu density structure:
- Barrier Removal Stage.
- No dishing and erosion.
For the high Cu density structure, we have the following scenario:

- Dishing = d₁
- Erosion greater than zero.

- Dishing = d₂ (d₂ < d₁).
- Increased Erosion.
A Two Step Polish Process (cont).

For the low Cu density structure, we have the following scenario:

Zero pre-dishing; Barrier not yet cleared.

Dishing = -d_2; Barrier has just being cleared.
Summary

■ Model for pattern dependencies in copper CMP developed.
 □ Model captures three intrinsic stages of Cu CMP processes.
 □ Model exploits the dependence of removal rate on local step-height.
 □ Preliminary results show that the model explains the pattern and time trends observed in experimental data.

■ Model parameter extraction methodology proposed.

■ Framework for extending the model to multi-step polish process proposed.

■ Future work: Relating the model parameters to the polish process parameters like down force, table speed, pad elasticity, etc.

■ Our ultimate goals include:
 □ Prediction of oxide (or more generally dielectric) thicknesses and Cu thicknesses across an entire chip (after CMP), for a given process.
 □ Designing around dishing and erosion.
 □ Minimizing dishing and erosion.