Reconfigurable Switched Capacitor DC-DC Converter using On-Chip Ferroelectric Capacitors
Dina El-Damak, Saurav Bandyopadhyay
May 2012
A reconfigurable switched capacitor DC-DC converter featuring high density ferroelectric capacitors (Fe-Caps) for charge transfer is designed in this work. The converter supports four gain settings (1-2/3-1/2-1/3) to supply wide output voltage range and is split in four modules for output voltage ripple reduction. The control circuit exploits dynamic gain selection and Pulse Frequency Modulation (PFM) for efficient output voltage regulation of the multi-phased converter. The chip is fabricated in 130 nm CMOS process and the system occupies an area of 0.366 sq.mm. It supports output voltage of 0.4V to 1.1V from 1.5V input while delivering load current of 20µA to 1mA and achieves a peak efficiency of 93% including the control circuit overhead.
|
Reconfigurable Processor for Energy-Scalable Computational Photography
Rahul Rithe, Priyanka Raina, Nathan Ickes
April 2012
Computational photography applications significantly extend and enhance the capabilites of existing cameras. The high computational complexity of such multimedia processing applications necessitates fast hardware implementations to allow real-time processing. This work implements a reconfigurable multi-application processor to enable energy-efficient real-time computational photography on portable multimedia devices. The reconfigurable hardware implements Bilateral filtering - a non-linear filtering technique with wide range of computational photography applications, and implements it using a Bilateral Grid structure, which represents an image using a 3D data structure and filters it using a 3D Gaussian kernel. The processor implements High Dynamic Range (HDR) imaging, Low-Light Enhancement, by merging flash and non-flash images such that the natural scene ambience is preserved while achieving high details and low noise, and Glare Reduction. The filtering engine can also be accessed from off-chip and used with other applications.
The implementation significantly accelerates bilateral filtering and enables various edge-aware image processing applications in real-time on HD images. The processor, implemented using 40 nm CMOS technology, is operational from 25 MHz at 0.5 V to 98 MHz at 0.9 V. The testchip achieves 13 megapixel/s throughput while consuming 1.4 mJ/megapixel energy at 0.9 V - a significant energy reduction compared to CPU/GPU implementations.
|
HEVC Video Decoder for 4K Ultra HD Applications
Chao-Tsung Huang, Mehul Tikekar, Chiraag Juvekar
March 2012
A video decoder chip supporting the High Efficiency Video Coding (HEVC) standard is designed in 40nm CMOS. The chip runs at 200 MHz at 0.9V with a throughput of 249 Mpixel/s to meet the requirements of 4K Ultra HD applications. Various architectural innovations are implemented in the chip to address large and variable pixel block sizes in HEVC and longer interpolation filters compared to the previous H.264/AVC standard. A motion compensation cache is designed to reduce the average bandwidth required from external memory by 67%. The chip consumes 78mW when decoding video at a resolution of 3840x2160 at 30 frames/s. The total system efficiency including simulated DRAM power is 1.19 nJ/pixel.
|
Application-specific SRAM using Output Prediction and Statistically-Gated Sense Amplifier
Mahmut E. Sinangil
December 2011
This work proposes an application-specific SRAM design targeted towards video and imaging applications where data stored in the memories is highly correlated. The design utilizes this correlation to reduce bit-line switching activity and uses signal statistics to implement a statistically-gated sense-amplifier approach to achieve up to 1.9× lower energy/access when compared to a standard 8T bit-cell based design. Test chip features 32Kb of the proposed design along with 32Kb of the standard 8T design to provide on-fly comparisons of energy/access between the two implementations.
|
Scalable 1Mb/s eTextile Body Area Network
Nachiket Desai
December 2011
An eTextiles body area network is designed across multiple layers for managing a group of biomedical sensors on a user's body. The sensors are powered remotely by a central base station that also manages data flow in both directions, using modulation schemes chosen to reduce communication effort at the energy-constrained sensors. Power and data are transferred across a magnetic near-field link formed by screen-printed inductors on fabric. Fabricated in 0.18µm CMOS, the base station consumes 2.9 mW power to connect to one sensor node consuming 34µW power and transmitting at 1 Mb/s. This results in an 8× increase in data rate and 6× increase in end-to-end power transfer efficiency than other solutions.
|
18.5kHz RC Oscillator with Comparator Offset Cancellation
Arun Paidimarri
October 2011
A fully-integrated 18.5kHz RC time-constant-based oscillator is designed in 65nm CMOS for sleep-mode timers in wireless sensors. A comparator offset cancellation scheme achieves 7x temperature stability improvement, leading to an accuracy of ±0.25% over –40 to 90°C and ±0.1% over 0 to 90°C. Sub-threshold operation and low-swing oscillations result in ultra-low power consumption of 120nW. The oscillator has a long-term Allan stability of 20ppm or better for measurement intervals over 0.5s.
|
EEG Acquisition SoC with Siezure Classification
Jerald Yoo , Long Yan, Dina El-Damak, Muhammad Bin Altaf, Ali Shoeb
May 2011
An 8-channel scalable EEG acquisition SoC is presented to continuously detect and record patient-specific seizure onset activities from scalp EEG. The SoC integrates 8 high-dynamic range Analog Front-End (AFE) channels, a machine-learning seizure classification processor and a 64KB SRAM. The classification processor exploits the Distributed Quad-LUT filter architecture to minimize the area while also minimizing the overhead in power×delay. The AFE employs a Chopper-Stabilized Capacitive Coupled Instrumentation Amplifier to show NEF of 5.1 and noise RTI of 0.91µVrms for 0.5-100Hz bandwidth. The classification processor adopts a support-vector machine as a classifier, with a GBW controller that gives real-time gain and bandwidth feedback to AFE to maintain accuracy. The SoC is verified with the Children’s Hospital Boston-MIT EEG database as well as with rapid eye blink pattern detection test. The SoC is implemented in 0.18µm 1P6M CMOS process occupying 25 sq.mm, and it shows an accuracy of 84.4% in eye blink classification test, at 2.03µJ/classification energy efficiency. The 64 KB on chip memory can store up to 120 seconds of raw EEG data.
|
Multi-channel 180pJ/b 2.4GHz FBAR-based Receiver
Phillip Nadeau
October 2010
A three-channel 2.4GHz OOK receiver is designed in 65nm CMOS and leverages MEMS to enable multiple sub-channels of operation within a band at a very low energy per received bit. The receive chain features an LNA/mixer architecture that efficiently multiplexes signal pathways without degrading the quality factor of the resonators. The single-balanced mixer and ultra-low power ring oscillator convert the signal to IF, where it is efficiently amplified to enable envelope detection. The receiver consumes a total of 180pJ/b from a 0.7V supply while achieving a BER=10-3 sensitivity of -67dBm at a 1Mb/s data rate.
|
2.4GHz Multi-channel FBAR-based TX and PA
Arun Paidimarri
October 2010
A 2.4GHz TX in 65nm CMOS defines three channels using three high-Q FBARs and supports OOK, BPSK and MSK. The oscillators have -132dBc/Hz phase noise at 1MHz offset, and are multiplexed to an efficient resonant buffer. Optimized for low output power ≈-10dBm, a fully-integrated PA implements 7.5dB dynamic output power range using a dynamic impedance transformation network, and is used for amplitude pulse-shaping. Peak PA efficiency is 44.4% and peak TX efficiency is 33%. The entire TX consumes 440pJ/bit at 1Mb/s.
|
Mixed-signal ECG Front-end
Marcus Yip
March 2011
A mixed-signal ECG front-end that uses aggressive voltage scaling to maximize power-efficiency and facilitate integration with low-voltage DSPs is implemented in a 0.18µm CMOS process. 50/60Hz interference is canceled using mixed-signal feedback, enabling ultra-low-voltage operation by reducing dynamic range requirements. Analog circuits are optimized for ultra-low-voltage, and a SAR ADC with a dual-DAC architecture eliminates the need for a power-hungry ADC buffer. Oversampling and ΔΣ-modulation leveraging near-VT digital processing are used to achieve ultra-low-power operation without sacrificing noise performance and dynamic range. The fully-integrated front-end consumes 2.9µW from a 0.6V supply.
|
Voltage Scalable Zero-Crossing Based Pipelined ADC
Sunghyuk Lee
June 2010
A voltage scalable zero-crossing based (ZCB) pipelined ADC is built in 65nm GP process. The highly digital implementation characteristic of the zero-crossing based circuit technique enables energy efficient operation and supply voltage scaling. A unidirectional coarse-fine charge transfer scheme is developed to allow low-voltage operation as well as high resolution. At 1.0V nominal supply and 50MS/s, the ADC achieves 67.7dB SNDR after calibration while dissipating 4.07mW resulting in an FOM of 41.0fJ/step. The supply voltage scalability is demonstrated down to 0.5V and improves the FOM to 28.0fJ/step, while maintaining higher than 66dB SNDR.
|
A 10pJ/cycle Ultra-Low Voltage 32-bit Microprocessor System-on-Chip
Nathan Ickes, Yildiz Sinangil, Francesco Pappalardo
May 2010
A voltage-scalable 32 b microprocessor system-on-chip (SoC) that provides both moderate peak performance (up to 82.5MHz at 1.2 V) and extreme energy efficiency (10.2 pJ/cycle at 0.54 V) for applications with limited energy budgets and time varying processing loads is presented. The SoC employs low-voltage 8T SRAMs operating down to an array voltage of 0.4V. Memory access energy is further reduced by miniature (128 B) latch-based instruction and data caches. On chip clock generation and the ability to boot from a small external serial flash ROM makes for a very small overall system.
|
Platform Architecture for Solar, Thermal and Vibration Energy combining with MPPT and single inductor
Saurav Bandyopadhyay
April 2010
The energy harvesting system designed combines energy from thermal,solar and vibrational energy sources. It uses a dual-path architecture having improved efficiencies with solar MPPT and a single off-chip inductor. The IC is designed in a 0.35um digital CMOS process.
|
Quad Full-HD Transform Engine for Dual-Standard Low-Power Video Coding
Rahul Rithe
March 2010
Transform engine is a critical part of the video codec and increased coding efficiency often comes at the cost of increased complexity in the transform module. In this work we propose a shared-reconfigurable transform engine for H.264/AVC and VC-1 video coding standards, using the structural similarity and symmetry of the transforms for H.264/AVC and VC-1. An approach to eliminate the need for an explicit transpose memory in 2D transforms is proposed. Data dependency is exploited to reduce power consumption. Ten different versions of the transform engine, such as with and without hardware sharing, with and without transpose memory, are implemented in the design. The design is fabricated using commercial 45nm CMOS technology and all implemented versions are verified. The shared-reconfigurable transform engine without transpose memory supports Quad Full-HD (3840x2160) video encoding at 30fps, while operating at 0.52V, with measured power of 214 uW.
|
A Resolution-Reconfigurable 5-to-10b 0.4-to-1V Power Scalable SAR ADC
Marcus Yip
January 2010
A resolution-reconfigurable 5-to-10b SAR ADC for micro-power sensor nodes is implemented in a low-leakage 65nm CMOS process, operating from 2MS/s at 1V to 5kS/s at 0.4V, with power that is linear with sample rate. The DAC power and ADC input capacitance scale exponentially with resolution, and voltage scaling further reduces the energy-per-conversion. Leakage power-gating is applied at low sample rates to reduce the minimum energy point of the ADC. The figure-of-merit is 22.4fJ/conversion-step in 10b mode at 0.55V.
|
A Highly Parallel and Scalable CABAC Decoder for Next-Generation Video Coding
Vivienne Sze
October 2009
A prototype of a pre-standard algorithm developed for HEVC called Massively Parallel CABAC that addresses a key bottleneck in the video decoder is implemented in a 65-nm CMOS process. The scalable testchip achieves a throughput of 24.11bins/cycle, which enables it to decode the max H.264/AVC bitrate (300Mb/s) with a 18MHz clock at 0.7V, consuming 12.3pJ/bin. At 1.0V, it decodes a peak of 3026Mbins/s for a bit-rate of 2.3Gb/s, which is enough for over seven 300Mb/s sequences or a 4kx2k resolution video at 186 fps. Joint algorithm and architecture optimizations are used to reduce critical path delay and memory requirements with little or no cost in coding efficiency.
|
An Energy-Efficiency Biomedical Signal Processing Platform
Joyce Kwong
August 2009
This chip is intended as a processor on a wearable medical monitoring sensor node, which continuously analyzes a subject's vital signs. In addition to a 16-bit general-purpose CPU, the chip leverages custom hardware accelerators to reduce the energy needed for common signal processing in biomedical applications. Voltage scaling and module-level power gating allow the chip to adapt to different applications with varied performance/processing demands. While running two published EEG and EKG analysis applications, the processor achieved > 10x energy reduction compared to a general-purpose low power CPU.
|
A DC-DC Converter for Portable Applications in 45nm CMOS
Saurav Bandyopadhyay and Yogesh Ramadass
August 2009
The DC-DC converter is designed in a 45nm digital CMOS process and is capable of handling 2.8 to 4.2V battery. The main converter is a buck regulator with efficiency of 75% to 87% over a wide load range (10uA to 100mA). It utilizes switched capacitor converters for internal rail generation and has a IC-DAC DPWM. |
A 28nm High-Density 6T SRAM with Optimized Peripheral Assist
Mahmut E. Sinangil
June 2009
A 128kb SRAM macro employing a 0.12um2 6T high-density bit-cell is fabricated in a low-power 28nm CMOS process. Hierarchical bit-line architecture, signal boosting and pre-read during write schemes enable operation down to 0.6V while introducing minimum area overhead. Performance of the memory scales from 20 to 400MHz on 0.6 to 1V operating voltage range where active power consumption scales from 2.8 to 68.5mW. |
A Biomedical Sensor Interface with a sinc Filter and Interference Cancelation
Jose L. Bohorquez and Marcus Yip
June 2009
A compact, low-power, digitally-assisted sensor interface for biomedical applications is implemented in a 0.18um CMOS process. It exploits oversampling and digital design to reduce system area and power, while making the system more robust to interferers. Anti-aliasing is achieved using a charge-sampling filter with a sinc frequency response and programmable gain. A mixed-signal feedback loop creates a sharp, programmable notch for interference cancelation. The on-chip blocks operate from a 1.5V supply and consume between 255nW and 2.5uW depending on noise and bandwidth requirements. |
A 100uW 10Mb/s eTextiles Transceiver for Body Area Networks with remote Battery Power
Patrick Mercier
June 2009
A transceiver for communicating over an electronic textiles medium is implemented for body area networks. A supply-rail-coupled differential signaling scheme permits time-sharing of the eTextiles medium between communication and remote powering circuits. Fabricated in 0.18µm CMOS and operating at 0.9V, the chip consumes 110µW at a data rate of 10Mb/s over a 1m fabric link. This results in 20-100X higher energy efficiency than state-of-the-art wireless and body-coupled communication systems. |
A Batteryless Thermoelectric Energy-Harvesting Interface Circuit with 35mV Startup Voltage
Yogesh Ramadass
December 2008
A batteryless thermoelectric energy-harvesting interface circuit to extract electrical energy from human body heat is implemented in a 0.35um CMOS process. A mechanically assisted startup circuit enables operation of the system from input voltages as low as 35mV. The chip includes a control circuit that performs maximal transfer of the extracted energy to a storage capacitor and regulates the output voltage at 1.8V.
|
SoC for Chronic Seizure Detection
Naveen Verma
June 2008
The IC is fabricated in 180nm 5M2P CMOS and operates at 1V. It includes a low-noise instrumentation amplifier for electroencephalograph (EEG) acquisition, an ADC, and a custom digital processor. The instrumentation amplifier uses a chopper-stabilized first stage with a power consumption of 3.5uW and a noise PSD of 130nV/sqrt(Hz). Its input impedance is >700MOhm making it suitable for surface EEG acquisition using Ag/AgCl electrodes. The ADC consumes 250nJ for each 12-bit conversion (10.6 ENOB). The processor includes a decimation filter and a spectral-analysis FIR filter bank to extract spectra-energy features for continuous seizure detection. |
An Efficient Piezoelectric Energy Harvesting Interface Circuit using a Bias-Flip Rectifier and Shared Inductor
Yogesh Ramadass
June 2008
A bias-flip rectifier that can improve the power extraction capability from piezoelectric harvesters over conventional full-bridge rectifiers by 4.2X is implmented in a 0.35um CMOS process. An efficient control circuit to regulate the output voltage of the rectifier and recharge a storage capacitor is presented. The inductor used within the bias-flip rectifier is shared efficiently with switching DC-DC converters reducing the overall component count. |
Voltage Scaling in SRAM
Masood Qazi
June 2008
There is a need for large embedded memory that operates over a wide range of supply voltage compatible with the limits of static CMOS logic. This chip demonstrates circuit solutions to voltage scaling in SRAM for both active operation and standby mode in an 8T SRAM fabricated in 45 nm SOI CMOS. The chip exhibits voltage scalable operation from 1.2 V down to 0.57 V with access times from 400 ps to 3.4 ns. Timing variation and the challenge of low voltage operation are addressed with an AC-coupled sense amplifier. An area efficient data path is achieved with a regenerative global bitline scheme. Finally, a data retention voltage sensor has been developed to predict the mismatch-limited minimum standby voltage without corrupting the contents of the memory. |
A 45nm 0.5V 8T Column-Interleaved SRAM with on-Chip Reference Selection Loop for Sense-Amplifier
Mahmut E. Sinangil
May 2008
8T bit-cells hold great promise for overcoming device variability in deeply scaled SRAMs and enabling aggressive voltage scaling for ultra-low-power. This work presents an array architecture and circuits with minimal area overhead to allow column-interleaving while eliminating the half-select problem. This enables sense-amplifier sharing and soft-error immunity. A reference selection loop is designed and implemented in the column circuitry. By choosing one of the two reference voltages for each sense-amplifier in a pseudo-differential scheme, selection loop effectively reduces input offset. 8T test array fabricated in 45nm CMOS achieves functionality from 1.1V to below 0.5V. Test chip operates at 450MHz at 1.1V and 5.8MHz at 0.5V while consuming 12.9mW and 46uW respectively. |
A 0.16mm2 Completely On-Chip Switched-Capacitor DC-DC Converter Using Digital Capacitance Modulation for LDO Replacement in 45nm CMOS
Yogesh Ramadass
April 2008
A completely on-chip switched-capacitor DC-DC converter that occupies 0.16mm2 is implemented in a 45nm CMOS process. The converter delivers 8mA output current while maintaining load voltages from 0.8 to 1V from a 1.8V input supply. A digital capacitive modulation scheme is employed to maintain the converter efficiency above 60% over a wide range of load current levels.
|
A Pulsed UWB Receiver SoC for Insect Flight Control
Denis Daly, Patrick Mercier and Manish Bhardwaj
April 2008
Lead Designer: Denis Daly
A highly integrated, 3-to-5 GHz non-coherent pulsed UWB Rx SoC is designed for an insect flight control system. The SoC includes an integrated 4-channel PWM stimulator. The highly duty cycled Rx requires 0.5 to 1.4nJ/bit. Amultistage tuned-inverter based RF front end and differential signal chain allows for robust, low energy operation. The receiver achieves a maximum sensitivity of -76dBm at a data rate of 16Mb/s (10 -3 BER).
A Highly Parallel Non-Coherent Digital Baseband
Lead Designer: Patrick Mercier
A highly parallel non-coherent digital baseband uses modified synchronization codes and quadratic correlators in place of matched filters to achieve a +/-1ns synchronization accuracy with an intgration period of 31.2ns. This reduces synchronization time by up to 11x compared to previous results.Implemented in a 90nm CMOS process, it draws 1.6mW at 0.55V during acquisition.
|
A 2mW 0.7V 720p H.264 Video Decoder
Daniel Finchelstein, Vivienne Sze, Mahmut Ersin Sinangil
November 2007
This 65nm ASIC demonstrates several architectural optimizations such as increased parallelism, multiple voltage / frequency domains and custom voltage-scalable SRAMs that enable low voltage operation and reduce the power of a high definition video decoder. |
A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS
Mahmut E. Sinangil
June 2007
In modern ICs, the trend of integrating more on-chip memories on a die has led SRAMs to account for a large fraction of total area and energy of a chip. Therefore, designing memories with dynamic voltage scaling (DVS) capability is important since significant active as well as leakage power savings can be achieved by voltage scaling. However, optimizing circuit operation over a large voltage range is not trivial due to conflicting trade-offs of low-voltage (moderate and weak inversion) and high-voltage (strong inversion) transistor characteristics. Specifically, low-voltage operation requires various assist circuits for functionality which might severely impact high-voltage performance. Reconfigurable assist circuits provide the necessary adaptability for circuits to adjust themselves to the requirements of the voltage range that they are operating in. This work presents a 64 kb reconfigurable SRAM fabricated in 65 nm low-power CMOS process operating from 250 mV to 1.2 V. This wide supply range was enabled by a combination of circuits optimized for both sub-threshold and above-threshold regimes and by employing hardware reconfigurability. A prototype test chip is tested to be operational at 20 kHz with 250 mV supply and 200 MHz with 1.2 V supply. Over this range leakage power scales by more than 50 X and a minimum energy point is achieved at 0.4V with less than 0.1 pJ/bit/access. |
A 65nm Subthreshold System-on-chip
Joyce Kwong, Yogesh Ramadass, Naveen Verma
June 2007
This is a subthreshold system-on-chip consisting of a 16-bit MSP430 microcontroller, SRAM, and on-chip DC-DC converter. The microcontroller and SRAM are designed to operate between 0.3V to 0.6V to support severely energy constrained applications. The switched capacitor DC-DC converter is fully integrated on chip and provides a wide range of load voltages (0.3V-1.1V) at > 70% efficiency. |
A 19pJ/pulse UWB Transmitter with Dual Capacitively-Coupled Digital Power Amplifiers
Patrick Mercier and Denis Daly
April 2007
A pulsed ultra-wideband transmitter operating in the 3-to-5GHz band is designed in 90nm CMOS. The all-digital architecture generates pulses by capacitively combining two paths which have in-phase RF signals, yet have counter-phase common-mode components that are canceled. This technique results in FCC-compliant pulse generation without requiring the use of any off-chip filters. The transmitter operates at a maximum data rate of 15.6Mbps, requires a core area of 0.07mm2, and achieves an energy efficiency of 19pJ/pulse. |
A Switched Capacitor DC-DC Converter for ultra-low-power applications
Yogesh Ramadass
November 2006
A switched capacitor DC-DC converter that could deliver scalable output voltages was designed in National Semiconductor's 0.18um CMOS process. The converter was able to deliver load voltages from 0.3V - 1.1V and was powered by a 1.2V battery. It employs on-chip charge transfer capacitors and reduces the loss due to bottom-plate parasitics by employing a method known as divide-by-3 switching. |
A 6-bit, 0.2V to 0.9V Highly Digital Flash ADC with Comparator Redundancy
Denis Daly
October 2006
A 6-bit highly digital flash ADC is implemented in a 0.18um CMOS process. The ADC operates in the subthreshold regime down to 200mV and employs comparator redundancy to improve linearity. Common-mode rejection is implemented digitally via an IIR filter. The ADC's minimum FOM is at a supply of 0.4V, where it achieves a FOM of 125fJ/conversion-step and a ENOB of 5.05 at 400kSPS. |
CMOS interface to CNT sensor arrays
Taeg Sang Cho
October 2006
The interface chip attains a large dynamic range using an ADC and DAC of lower dynamic range and an automatic gain control. The sensor interface chip is designed in a 0.18um CMOS process and consumes, at maximum, 32 uW at 1.83 kS/s conversion rate. The designed interface achieves 1.34% measurement accuracy over 10 kOhm - 9 MOhm dynamic range. The power consumption of the chip can be linearly scaled using duty-cycling. |
A 256kb 65nm 8T Sub-Threshold SRAM Employing Sense-Amplifier Redundancy
Naveen Verma
June 2006
An 8T SRAM achieves full read and write functionality at 350mV. The read-buffered bit-cell eliminates the read static noise margin limitation; peripheral control of the read-buffer eliminates sub-Vt bit-line leakage from unaccessed cells; peripheral control of the bit-cell supply voltage ensures write-abilty in the presence of variation; and the technique of sense-amplifier redundancy improves the area-offset tradeoff in the sensing network by over a factor of 5. |
A 400-mV UWB Baseband Processor
Vivenne Sze
May 2006
The baseband processor performs acquisition and demodulation of an UWB packet with a throughput of 500-MS/s for a data-rate of 100-Mb/s. It operates at an ultra-low supply voltage of 400-mV to achieve 20 pJ/bit, and utilizes a highly parallelized architecture to meet throughput constraints. It was fabricated in a standard-VT 90-nm CMOS process. |
A 2.5nJ/b 0.65V 3-to-5GHz Subbanded UWB Receiver in 90nm CMOS
Fred S. Lee
May 2006
The IC is a non-coherent 0-to-16Mb/s UWB receiver using 3-to-5GHz subbanded PPM signaling implemented in a 90nm CMOS process. The RF and mixed-signal baseband circuits operate at 0.65V. Using duty-cycling, adjustable BPFs, and an energy-aware baseband, the receiver achieves 2.5nJ/b and 10^(-3) BER with -99dBm sensitivity at 100kb/s. |
A 3.1-5GHz All-Digital UWB Transmitter
David D. Wentzloff
May 2006
This chip demonstrates an all-digital technique for generating UWB pulses with a programmable width and a center frequency tunable to 3 channels in the 3.1-5GHz band without the use of an RF oscillator. A delay-based spectral scrambling technique is proposed and implemented in this chip that exploits the delay-line based digital architecture to scramble the output spectrum. The main advantage of this scrambling technique is a drastic reduction of the hardware required to implement it, relative to the more commonly used BPSK scrambling. The transmitter uses only digital blocks, including the final stage driving the 50Ohm UWB antenna, which is a digital pad driver. The circuit consumes a total of 43pJ/bit at a data rate of 16.7Mb/s, including all core, control, and I/O power. |
Minimum Energy Tracking Loop with Embedded DC-DC Converter
Yogesh Ramadass
February 2006
An energy minimization loop, with on-chip energy sensor circuitry, that can dynamically track the minimum energy operating voltage of a digital circuit with changing workload and operating conditions occupies 0.05mm2 in 65nm CMOS. The DC-DC converter that enables this minimum energy operation can deliver load voltages as low as 250mV and achieved an efficiency >80% while delivering load powers of the order of 1uW and higher from a 1.2V supply. |
UWB digital baseband for 100Mbps transceiver
Raul Blazquez
August 2005
This baseband achieves 100Mbps using UWB impulses of
500MHz bandwidth in the FCC compliant band, as part of a UWB system.
Due to its bandwidth, the multipath becomes relevant. This digital
baseband allows to assess the quality of the channel and exposes
several knobs to fine-tune the receiver, trading off number of
operations and power dissipation with quality of service. It includes
a MLSE and a RAKE receiver to compensate for multipath. It has been
implemented in 0.18um CMOS technology.
|
A 50Mb/s UWB Prototype Transceiver
Nathan Ackerman, Raul Blazquez, Kyle Gilpin, Brian Ginsburg, Fred Lee, Vivienne Sze, David Wentzloff
August 2005
This prototype transceiver is built using discrete components. It communicates in a 500MHz band centered at 5.355GHz using BPSK pulses with a pulse repetition frequency of 50MHz. The received signal is down-converted to I/Q baseband signals using off-the-shelf discrete components. The baseband signals are digitized by dual 8-bit Atmel ADCs. Synchronization and demodulation are implemented in a Xilinx Virtex II FPGA enabling real-time communication at 50Mb/s. The transceiver communicates with a PC over USB2.0. Real-time one-way transmission of a video stream over the air has been demonstrated at a 50Mb/s raw data rate using this transceiver. |
An Energy Efficient OOK Transceiver for Wireless Sensor Networks
Denis Daly
May 2005
A 1 Mbps 916.5 MHz OOK transceiver for wireless
sensor networks has been designed in a 0.18-µm CMOS process.
The RX has an envelope detection based architecture with a
highly scalable RF front end. The RX power consumption scales
from 0.5 mW to 2.6 mW, with an associated sensitivity of
-37 dBm to -65 dBm at a BER of 10-3. The TX consumes
3.8 mW to 9.1 mW with output power from -11.4 dBm to
-2.2 dBm. The RX achieves a startup time of 2.5 µs, allowing
for efficient duty cycling. |
Fine Grain Power Domains with Dual-VDD for a Field Programmable Gate Array
Frank Honore
April 2005
A Field Programmable Gate Array test chip using 0.18um CMOS contains reconfigurable power domains to optimize active power consumption. Each configurable logic block and routing channel can operate at a choice of 2 voltages to reduce power consumption where longer latencies can be tolerated. On average a 54% reduction in power is achieved. |
500-MS/s 5-bit ADC with Split Capacitor Array
Brian Ginsburg
March 2005
A 500-MS/s, 5-b analog-to-digital converter (ADC) is implemented in 65nm CMOS technology. The ADC has six time-interleaved successive approximation register (SAR) channels that consume 6 mW from a 1.2 V supply. The ADC is the first implementation of the split capacitor array, replacing the conventional binary-weighted capacitor array of a SAR converter. The new array is faster and lower power without any degradation in linearity. |
Sub-threshold SRAM
Ben Calhoun
March 2005
A 256kb sub-threshold SRAM operates below 400mV from 0 to 85°C and is implemented in 65nm CMOS technology. For the same 6 sigma static-noise margin, the sub-threshold SRAM at 0.4V achieves 2.25-times lower leakage power and 2.25-times lower active energy than its 6T counterpart at 0.6V. The SRAM uses a 10T bitcell to enable sub-threshold functionality. |
Ultra Low Power ADC For Wireless Micro-Sensors
Naveen Verma
October 2004
A rate scalable (0-200kS/s) and resolution scalable (8b or 12b) ADC is
implemented using the successive approximation architecture. At the highest
performance point (12b, 100kS/s) it consumes just 25µW, and the power decreases
linearly with reduced sampling rate. Efficient operation is obtained through
several techniques: Analog offset compensation in the latch improves the
comparator power-delay product; robust self timing eases the settling time
requirements; and switched-capacitor auto-zero reference generation maximizes
common-mode rejection. |
Low-power Digital Processor for Wireless Sensor Networks
Daniel Finchelstein
October 2004
This chip explores the design of a low-power digital processor
for wireless network sensor nodes, employing techniques such as
hardwired algorithms, lowered supply voltages, and subsystem clock
gating. |
Dual 500 MSample/s 5-bit ADC chip
Brian Ginsburg
September 2004
Two analog-to-digital converters are integrated on this 0.18µm
CMOS chip to provide Nyquist sampling of quadrature UWB signals
that have been down-converted to baseband. The ADCs use a six-way
time-interleaved successive approximation register topoogy
to achieve a total 15.6mW core power consumption from a 1.8V
digital and 1.2V analog; the resolution is scalable down to
1-bit for further power savings. |
UWB 100Mb/s 3.1-10.6GHz Transceiver Chipset
Fred Lee, David Wentzloff, Brian Ginsburg
June 2004
This chip is the RF front-end for a 100Mb/s pulsed ultra-wideband
(UWB) transceiver that communicates in 14 channels spaced 528
MHz apart in the 3.1-10.6 GHz band. It features an FCC compliant
BPSK pulse-shaping transmitter, a direct-conversion receiver
with 802.11a notch filtering, and two cross-coupled quadrature
VCOs. The chip was fabricated in a 0.18µm SiGe BiCMOS process. |
Differential and Single Ended Elliptical Antennas for 3.1-10.6
GHz Ultra Wideband Communication
Johnna Powell
December 2003
The primary design is an ultra thin, low profile differential
antenna with an incorporated ground plane for use with a UWB
IC receiver. The differential capability eases the design complexity
of the RF Front-End, and the incorporation of a ground plane
enables conformability with small electronic UWB devices. Two
single ended designs are also presented for use with a UWB
IC transmitter. Both designs result in excellent bandwidth,
efficiency, and nearly omnidirectional radiation patterns. |
Subthreshold Programmable FIR Filter Chip
Ben Calhoun
December 2003
A suite of programmable FIR filters designed for operation
in the subthreshold region provides insight into sizing for
minimum energy operation.
|
Ultra-Dynamic Voltage Scaling Test Chip
Ben Calhoun
August 2003
This 90nm test chip demonstrates ultra-dynamic voltage scaling
using local voltage dithering for a suite of 32-bit Kogge-Stone
adders. The adders function from VDD at 1.2V to below 200mV,
extending the range of energy-delay scalability. |
A 180mV FFT Processor Using Subthreshold Circuit Techniques
Alice Wang
June 2003
Minimizing energy requires scaling supply voltages below device
thresholds. The fabricated 1024-pt fast Fourier Transform (FFT)
processor operates down to 180mV using a standard 0.18µm
CMOS logic process while using 155nJ/FFT at the optimal operating
point. |
Substrate Noise Characterization
Nisha Checka and David Wentzloff
December 2002
Substrate noise is a major problem that plagues mixed-signal
circuits. Parasitic interactions from switching digital circuits
propagate via the shared substrate to sensitive analog circuits
adversely affecting performance. A chip was designed to characterize
substrate noise generated by digital circuits as well as to
study the effect of substrate noise on the performance of a
standard component of the RF front-end, the voltage controlled
oscillator (VCO). The chip was fabricated in a 0.18 µm
CMOS mixed-signal process. |
A Single-Chip Ultra-Wideband Transceiver
Raul Blazquez, Fred Lee and Puneet Newaskar
December 2002
This is one of lab's first UWB-related chip, consisting of a
LNA, a FLASH time-interleaved ADC, a self-biased PLL, and a digital baseband. This CMOS chip integrates a complete wireless transceiver system working in the 0-to-500 MHz ultra-wideband. |
Energy Scalable FFT Chip
Alice Wang
June 2002
The scalable FFT chip demonstrates energy-aware architectures.
An energy-aware architecture is used to scale gracefully between
energy and quality. The architecture has variable bit precision
logic (multipliers, adders, etc.), memories (RAM and ROM) and
a variable memory size, in order to compute 128-1024-pt FFT
lengths and between 8- and 16-bit precision FFT's. |
Low-power Multi-Threshold CMOS (MTCMOS) FPGA Chip Utilizing
Fine-Grained Leakage Management
Ben Calhoun, Frank Honore
March 2002
This 0.13µm, dual VT test chip uses MTCMOS-style logic
to implement a low-power FPGA architecture. The FPGA circuits
reduce standby leakage by over 8X while holding their state.
Idle sub-blocks in the design automatically enter sleep mode
at a fine granularity, reducing active off-current by up to
several times. |
µAMPS-1 Node
Nathan Ickes, Fred Lee and Piyada Phanaphat
February 2002
The µAMPS-1 microsensor node uses commercial, off-the-shelf
(COTS) components for rapid construction. A µAMPS-1 node
consists of a stack of three or four printed circuit boards.
The top board contains the radio, including the RF circuitry
and the FPGA used for digital coding and decoding. The second
board contains an Intel StrongARM processor and associated
RAM and flash ROM. Also on the processor board are an acoustic
sensor (microphone, amplifier, filter, and analog-to-digital
converter) and a collection of dc/dc power converters that
service the entire node. The optional third board in the stack
is an additional sensor module to replace the acoustic sensor
on the processor board. The µAMPS-1 node can be easily
adapted to different applications by designing an appropriate
sensor board. |
6.5GHz CMOS Frequency Synthesizer with FSK Modulator
Seong Hwan Cho
May 2001
This chip will enable energy efficient communication for low
power wireless sensor networks. Fabricated in 0.25µm
BiCMOS process, the modular achieves 20µs start-up time with
2.5 Mbps data rate while consuming 22mW, where 18mW is consumed
in the VCO and 4mW is consumed in the PLL.
|
A 175mV Multiply-Accumulate Unit using an Adaptive Supply
Voltage and Body Bias (ASB) Architecture
James Kao and Masayuki Miyazaki
December 2000
These photos show the 16-bit MAC (top photo) evaluated by
the ASB control (bottom photo). The ASB selects the optimum
combination of F/Vdd/Vbb including forward substrate biases.
The MAC operates at the lowest Vdd of 175mV.
|
Optical Clocking Chip
Shiou Lin Sam
December 1999
This test chip consists of an optical receiver and detector
designed to investigate the effects of variation and to characterize
area and power requirements of an optical interconnect system.
|
Low Power Sensor DSP for Biomedical Applications
Rajeevan Amirtharajah
February 1999
This DSP chip is targeted toward low and medium throughput
sensor applications. It is a hybrid architecture consisting
of custom filtering units and a programmable microcontroller.
It has run a real-time acoustic heartbeat detection algorithm
successfully at a power consumption of 560 nW at 1.5 V. |
Vibration-to-Electric MEMS Device
Jose Oscar Mur-Miranda
Mechanical vibrations are converted into electrical energy
by using a MEMS variable capacitor. The variable capacitor
consists of a 1.5cm-by-0.5cm silicon structure etched in a
wafer of 500µm thickness. |
Domain Specific Reconfigurable Cryptographic Processor
James Goodman
January 1999
The DSRCP utilizes a dynamically-reconfigurable datapath to
implement a variety of public key cryptographic primitives
and algorithms including large integer arithmetic (8 - 1024),
both prime and binary Galois Field arithmetic (GF(2^8) - GF(2^1024),
and GF(p) for 2^8 < p < 2^1024), and Elliptic Curve arithmetic
over both integer and binary Galois fields. |
Distributed 1.3 GHz System Clock Generation Chip
Vadim Gutnik
October 1998
16 Oscillators and 24 phase detectors form a distributed,
symmetric phase-locked loop that is guaranteed to lock with
the phases aligned, and generate a 1.3 GHz clock over the entire
3mm x 3 mm chip. Fabricated in a 0.35 micron TSMC process,
the chip consumed 130 mA and 3V. |
Parallel Fine-Resolution Time Sampling Chip
Vadim Gutnik
October 1998
Proof-of-concept chip for fine-resolution, one-shot, digital
time-interval measurements. An array of arbiters samples two
input clocks and outputs binary measurement results. External
calibration of the mismatches between the arbiters allows the
outputs to be converted to a time measurement accurate to approximately
2ps. Fabricated in a 0.35 micron TSMC process. (A second array
introduces fixed RC delays between the arbiters and thus allows
larger dynamic-range measurements at the cost of lost precision.) |
A Low Power Controller for a MEMS Based Energy Converter
Scott Meninger
October 1998
This chip consists of a low power digital control core and
optimized power switches which act in concert with a MEMS (micro-electromechanical
systems) variable capacitor to harvest ambient vibrational
energy for use by low power electronic loads. |
DCT Core Processor
Thucydides (Duke) Xanthopoulos
October 1998
The DCT core processor computes the Discrete Cosine Transform
on 8x8 blocks of picture elements. It exploits signal correlation
and quantization for arithmetic activity minimization and low
power operation. The chip dissipates 4.3 mW at 1.5V, 14 MHz. |
Low Power Video Encoder
Thomas Simon
October 1998
This wavelet based full motion video encoder performs scalable
compression on 30 frames/sec at 128x128 resolution. The encoder
dissipates 400-800 µW depending on the spatial and temporal
content in the video stream. |
DC/DC Converter for Self-Powered Signal Processing
Rajeevan Amirtharajah
An ultra-low power DC/DC converter is implemented in this
chip to enable a load DSP to be powered from ambient mechanical
vibration. It uses performance feedback to implement low resolution
digital control. Its power consumption is 14 microwatts at
1V. |
IDCT Core Processor
Thucydides (Duke) Xanthopoulos
The IDCT core processor computes the Inverse Discrete Cosine
Transform on 8x8 blocks of spectral coefficients. It features
a clock-gated pipeline that reduces the total system duty cycle
in the presence of zero valued spectral coefficients. The chip
dissipates 4.5 mW at 1.3V, 14 MHz. |
QRG w/embedded DC-DC Converter
James Goodman
May 1997
Extension of the QRG to utilize an embedded switching DC-DC
converter. The DC-DC converter utilizes pulse-width modulation
to generate very high efficiency (90-95%) variable supply voltages.
The QRG and embedded converter are coupled via a performance
feedback control circuit that allows you to operate at the
minimum required supply voltage for a given application. |
Variable Length Decoder
Seong Hwan Cho
March 1997
This chip is a low power variable length decoder for MPEG-2
system, fabricated in 0.6µm CMOS process. By exploiting
incoming signal statistics, the chip consumes 500µW, which
is more than an order magnitude lower power than existing architectures. |
Quadratic Residue Generator (QRG)
James Goodman
August 1996
The QRG is utilized to generate high quality pseudo-random
data for use in stream ciphering systems. The QRG utilizes
a reconfigurable datapath to performs big-integer arithmetic
operations on operands ranging from 8 - 512 bits in size. The
QRG utilizes both conventional clock gating and self-timed
gating to minimize the switched capacitance. |
DC-DC Converters With High Efficiency Over Wide Load Ranges
Joshua Bretz
This DC-DC converter introduces several novel circuits which
enables efficient operation at output powers from 100µW to
1W. Depending on the load current, the regulator automatically
switches between Pulse Frequency Modulation (PFM) and Pulse
Width Modulation (PWM), and automatically selects the optimum
size for the switching MOSFET. |
A Reconfigurable Dual Output Low Power Digital PWM Power
Converter
Abram Dancy
This versatile power converter controller provides dual outputs
at a fixed switching frequency and can regulate either output
voltage or target system delay. Efficiency of > 90% has
been demonstrated for low output power levels (milliwatts). |
Controller for a Variable Supply Voltage Power Supply
Vadmin Gutnik
A simple feedback loop determines the supply voltage and system
clock frequency needed to just satisfy a computation throughput
constraint. The power controller, and a counter to model DSP
take 0.4 square mm and 1mW. |