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Abstract - Networks of distributed microsensors are emerging as a compel-
ling solution for a wide range of data gathering applications. Perhaps the most
substantial challenge facing designers of small but long-lived microsensor
nodes is the need for significant reductions in energy consumption. We pro-
pose a power-aware design methodology that emphasizes the graceful scalabil-
ity of energy consumption with factors such as available resources, event
frequency, and desired output quality, at all levels of the system hierarchy. Our
architecture for a power-aware microsensor node highlights the collaboration
between software that is capable of energy-quality tradeoffs and hardware
with scalable energy consumption. 

1. INTRODUCTION

The design of micropower wireless sensor systems has gained increasing impor-
tance for a variety of civil and military applications. Advances in MEMS technol-
ogy and its associated interfaces, signal processing, and RF circuitry have enabled
the development of wireless sensor nodes. The focus has shifted from limited mac-
rosensors communicating with base stations to creating wireless networks of com-
municating microsensors, as illustrated in Figure 1. Such sensor networks
aggregate complex data to provide rich, multi-dimensional pictures of the environ-
ment. While individual microsensor nodes are not as accurate as their expensive
macrosensor counterparts, their size and cost will enable the networking of hun-
dreds or thousands of nodes in order to achieve high quality, easily deployed, fault-
tolerant sensing networks [1][2].

A key challenge in the design of a microsensor node is low energy dissipation. In
this paper, we advocate power-aware system design, which calls for a system
whose energy consumption adapts to constraints and variations in the environment,
onboard resources, or user requests. Power-aware design methodologies offer scal-
able energy savings that are ideal for the high variabilities of the microsensor envi-
ronment.. 
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2. POWER-AWARE SYSTEM DESIGN

Low-power system design assuming a worst-case power dissipation scenario is
being supplanted by a more comprehensive philosophy variously termed power-
aware or energy-aware or energy-quality scalable design [3]. The basic idea behind
these essentially identical approaches is to allow the system’s energy consum
to scale with changing conditions and quality requirements.

There are two main views motivating power-aware design and its emergence 
important paradigm. The first view is to explain the importance of power-aw
ness as a consequence of the increasing emphasis on making systems mo
able. In this context, making a system scalable refers to enabling the user to tra
system performance parameters as opposed to hard-wiring them. Scalability
important figure-of-merit since it allows the end-user to implement operational 
icy, which often varies significantly over the lifetime of the system. At times, 
user of a microsensor network might want extremely high performance (e.g.,
with a high signal-to-noise ratio) at the cost of reduced battery lifetime. Howev
other times, the opposite might be true—the user may be willing to trade off qu
in return for maximizing battery lifetime. Such trade-offs can only be optima
realized if the system is designed in a power-aware manner. A related motiv
for power-awareness is that a well-designed system should gracefully degra
quality and performance as available energy resources are depleted inste
exhibiting an “all-or-none” behavior of high-SNR data followed by a network fa
ure [4].

While the view above argues for power-awareness from a user-centric and use
ible perspective, this paradigm can also be motivated in more fundamental, sy
oriented terms. With burgeoning system complexity and the accompan
increase in integration, there is more diversity in operating scenarios than
before. Hence, design philosophies that assume the system to be in the wors
operating state most of the time are prone to yield globally sub-optimal results.
naturally leads to the concept of power-awareness. For instance, the embedde

Figure 1.  Microsensor networks for remote sensing.
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cessor in a sensor node can display tremendous workload diversity depending on
activity in the environment. Nodes themselves can also play a variety of roles in the
network; a sensor networking protocol may call for the node to act as a data gath-
erer, aggregator, relay, or any combination of these [5][6]. Hence, even if the user
does not explicitly change quality criteria, the processor can nevertheless exploit
operational diversity by scaling its energy consumption as the workload changes.

In the following sections we introduce prototype hardware and design methodolo-
gies for a power-aware microsensor node. Through these examples, we emphasize
that power-awareness as a design driver does not necessarily devolve to traditional,
worst-case-centric low-power/low-energy design.

3. SENSOR NODE ARCHITECTURE

A prototype of a sensor node that illustrates power-aware design methodologies
is outlined in Figure 2. This system, the first prototype of our µAMPS (micro-
Adaptive Multi-domain Power-aware Sensors) effort [7], is designed with commer-
cial off-the-shelf components for rapid prototyping and modularity.

Power Supply. Power for the sensor node is supplied by a single 3.6V DC source,
which can be provided by a single lithium-ion cell or three NiCD or NiMH cells.
Regulators generate 5V, 3.3V, and adjustable 0.9-1.5V supplies from the battery.
The 5V supply powers the analog sensor circuitry and A/D converter. The 3.3V
supply powers all digital components on the sensor node with the exception of the
processor core. The core is powered by a digitally adjustable switching regulator
that can provide 0.9V to 1.6V in twenty discrete increments. The digitally adjust-
able voltage allows the SA-1100 to control its own core voltage, enabling dynamic

Figure 2.  µAMPS sensor node hardware and software framework.

Data 
Aggregation
Algorithms

Network
Protocols

Link
Level

Protocols

Low Power 
Radio

StrongARM SA-1100A/D

Seismic
Sensor

Acoustic
Sensor

Software (ROM)

Hardware

Battery

DC/DC converter

µ-OS

Memory



512

rt the

d on
ys-

ut-off
xter-

ity
n the
ble of

pecifi-
 the
pera-
with
nsor
t are

 system
ard-

nsor
ality
s sec-

 into
voltage scaling techniques. Section 4.2 elaborates on dynamic voltage scaling.

Sensors. The node includes seismic and acoustic sensors. The seismic sensor is a
MEMS accelerometer capable of resolving 2 mg. The acoustic sensor is an electret
microphone with low-noise bias and amplification. The analog signals from these
sensors are conditioned with 8th-order analog filters and are sampled by a 12-bit A/
D. The high-order filters eliminate the need for oversampling and additional digital
filtering in the SA-1100. All components are carefully chosen for low power dissi-
pation; a sensor, filter, and A/D typically requires only 5 mA at 5 Volts.

Microprocessor and Operating System. A StrongARM SA-1100 microprocessor
is selected for its low power consumption, sufficient performance for signal pro-
cessing algorithms, and static CMOS design. The memory map mimics the SA-
1100 “Brutus” evaluation platform and thus supports up to 16 MB of RAM and 
KB of ROM. The lightweight, multithreaded “µOS” running on the SA-1100 is an
adaptation of the eCOS microkernel [8] that has been customized to suppo
power-aware methodologies discussed in Section 4. The µOS, data aggregation
algorithms, and networking firmware are embedded into ROM.

Radio. The radio module interfaces directly to the SA-1100. The radio is base
a commercial single-chip transceiver optimized for ISM 2.45 GHz wireless s
tems. The PLL, transmitter chain, and receiver chain are capable of being sh
under software or hardware control for energy savings. To transmit data, an e
nal voltage-controlled oscillator (VCO) is directly modulated, providing simplic
at the circuit level and reduced power consumption at the expense of limits o
amount of data that can be transmitted continuously. The radio module is capa
transmitting up to 1 Mbps at a range of up to 15 meters.

4. POWER-AWARE METHODOLOGIES

In this section, we present energy-scalable design methodologies geared s
cally toward our microsensor application. At the hardware level, we note
unusual energy consumption characteristics effected by the low duty cycle o
tion of a sensor node, and adapt to varying active workload conditions 
dynamic voltage scaling. At the software level, energy-agile algorithms for se
networks such as adaptive beamforming provide energy-quality tradeoffs tha
accessible to the user. Power-aware system design encompasses the entire
hierarchy, coupling software that understands the energy-quality tradeoff with h
ware that scales its own energy consumption accordingly.

4.1  Low Duty Cycle Issues

The energy consumption characteristics of the components in a microse
node provide a context for the power-aware software to make energy-qu
tradeoffs. We discuss the energy consumption of the processor and radio in thi
tion and expand our discussion of the processor in the following section.

Energy consumption in a static CMOS-based processor can be classified
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switching and leakage components. The switching energy is expressed as Eswitch=
CtotVdd

2 where Ctot is the total capacitance switched by the computation and Vdd is
the supply voltage. Energy lost due to leakage currents is modeled with an expo-
nential relation to the supply voltage [9]:

(1)

While switching energy is usually the more dominant of the two components [10],
the low duty cycle operation of a sensor node can induce precisely the opposite
behavior. Figure 3 demonstrates that, for sufficiently low duty cycles or high supply
voltages, leakage energy can exceed switching energy. For example, when the duty
cycle of the StrongARM SA-1100 is 10%, the leakage energy is more than 50% of
the total energy consumed. Techniques such as dynamic voltage scaling and the
progressive shutdown of idle components in the sensor node mitigate the energy
consumption penalties of low duty cycle processor operation.

Low duty cycle characteristics are also observable in the radio. Figure 4 illustrates
the energy required to power up a radio and transmit a packet of varying length.
Ideally, the energy consumed per bit would be independent of packet length. At
lower data rates, however, the start-up overhead of the radio’s electronics beg
dominate the radio’s energy consumption. Due to its slow feedback loop, a ty
PLL-based frequency synthesizer has a settling time on the order of milliseco
which may be much higher than the transmission time for short packets. Part
effort is required to reduce transient response time in low power frequency sy
sizers for low data rate sensor systems.
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Figure 3.  Comparison of leakage and 
switching energy in SA-1100

Figure 4.  Modeled energy 
consumption per bit for a radio 
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4.2  Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) exploits variabilities in processor workload and
latency constraints and realizes this energy-quality tradeoff at the circuit level
[11][12]. As discussed above, the switching energy of any particular computation is
Eswitch= CtotVdd

2, a quantity that is independent of time. Reducing Vdd offers a qua-
dratic savings in switching energy at the expense of additional propagation delay
through static logic. Hence, if the workload on the processor is light, or the latency
tolerable by the computation is high, we can reduce Vdd and the processor clock fre-
quency together to trade off latency for energy savings. Both switching and leakage
energy are reduced by DVS; as Equation 1 indicates, leakage energy varies more
than exponentially with Vdd.

Figure 5a depicts the measured energy consumption of a SA-1100 processor run-
ning at full utilization. Energy consumed per operation is plotted with respect to the
processor frequency and voltage. As discussed above, a reduction in clock fre-
quency allows the processor to run at lower voltage. The quadratic dependence of
switching energy on supply voltage is evident, and for a fixed voltage, the leakage
energy per operation increases as the operations occur over a longer clock period.
Our selections of voltages corresponding to each frequency, plotted in Figure 5b,
provide energy savings at reduced clock frequencies with a reasonable margin of
safety.

Figure 6 illustrates the regulation scheme on our sensor node for DVS support. The
µOS running on the SA-1100 selects one of the above eleven frequency-voltage
pairs in response to the current and predicted workload. A five-bit value corre-
sponding to the desired voltage is sent to the regulator controller, and logic external
to the SA-1100 protects the core from a voltage that exceeds its maximum rating.
The regulator controller typically drives the new voltage on the buck regulator in
under 100 µs. At the same time, the new clock frequency is programmed into the

59 88.5 118 147.5 176.9 206.4

0.9

1

1.1

1.2

1.3

1.4

1.5

Core Frequency (MHz)

C
or

e 
V

ol
ta

ge

1.6
1.5

1.4
1.3

1.2
1.1

1.0
0.9

206.4

176.9

147.5

118.0

 88.5

 59.0

0

0.2

0.4

0.6

0.8

1

Core Voltage (V)Clock (MHz)

E
ne

rg
y 

pe
r 

O
pe

ra
tio

n

Figure 5.  (a) Measured energy consumption characteristics of SA-1100.
(b) Selection of (frequency, voltage) pairs for DVS
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SA-1100, causing the on-board PLL to lock to the new frequency. Relocking the
PLL requires 150 µs, and computation stops during this period.

Our implementation of the above system demonstrates energy-quality tradeoffs
with DVS. In Figure 7a, for a fixed computational workload, the latency (the
inverse of quality) of the computation increases as the energy decreases. In
Figure 7b, the quality of a FIR filtering algorithm is varied by scaling the number of
filter taps. As we sacrifice filter quality, the processor can run at a lower clock
speed and thus operate at a lower voltage. In each example, our DVS-based imple-
mentation of energy-quality tradeoffs consumes up to 60% less energy than a fixed-
voltage processor.

4.3  Energy-Agile Algorithms

As the node’s processor is capable of scaling energy consumption grace
with computational workload, we can exploit this scalability at the algorithm le
with energy-agile algorithms of scalable computational complexity. Scalability
the algorithm level is highly desirable because a large range of both energy
quality can be achieved. As the energy-quality characteristics of DSP algori

Figure 6.  Feedback for dynamic voltage scaling.
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may not be optimal due to data dependencies, it is important to use algorithmic
transforms to achieve desirable energy-quality (E-Q) characteristics and accurately
model the energy-quality relationship through benchmarking.

Algorithmic transformations such as the most significant first transform can
improve the E-Q characteristics of a particular algorithm by reducing data depen-
dencies. Figure 8a shows our testbed of sensors for beamforming [13][14], a class
of algorithms often used in sensor arrays to make inferences about the environment.
In our testbed, an array of six sensors is spaced roughly linearly at intervals of
approximately 10 meters, a source moves parallel to the sensor cluster at a distance
of 10 meters, and interference exists at a distance of 50 meters. We perform beam-
forming on the sensor data as we vary the number of sensors k, and we measure the
energy dissipated on the StrongARM SA-1100 in relation to k. We calculate the
matched filter output (quality) and derive a reliable model of the E-Q relationship
as we vary the number of sensors in beamforming. 

We compare the E-Q characteristics for two scenarios, the first being traditional
beamforming, and the second using a most significant first transform. In the first
scenario, beamforming is simply done in a preset order <#1,#2,#3,#4,#5,#6>. As the

Figure 8.  (a) Sensor testbed. (b) E-Q curve for Scenario 1.
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source moves from location A to B, the E-Q curves changes dramatically as seen in
Figure 8b. With the source in location A, the beamforming quality is close to maxi-
mum when k=5,6 because the source is closest to sensors #5 and #6. However, with
the source at B, quality is close to maximum after beamforming only 2 sensors, thus
showing the dependency of the E-Q graph on the relative source location.

Intelligent data processing can circumvent this dependency. Intuitively, we wish to
beamform the data from sensors which have higher signal energy to interference
energy, or process the most significant first. Figure 9a shows a block diagram for
applying a most significant first transform to beamforming. To find the desired
beamforming order, each sensor’s data energy is estimated. The energies ar
sorted using quicksort. The quicksort output determines the desired beamfor
order. We plot the E-Q curves for the new scenario in Figure 9b. By finding
desired beamforming order, we achieve similar E-Q plots even as the source m
with respect to the sensors. The energy cost required to gain this additional sc
ity is low compared to the energy cost of LMS beamforming itself: on the SA-11
the additional computational cost was 8.8mJ, which is only 0.44% of the t
energy for LMS beamforming (for the 2 sensor case). The incremental refine
characteristics of a sensor’s beamforming algorithm are improved, leading to 
uniform and predictably scalable E-Q curves in the presence of data depende

The energy scalable framework proposed in this paper enables the developme
implementation of energy-agile applications. It will be important that all process
in the sensor node be energy scalable, including link level protocols, senso
work protocols, data aggregation algorithms, and sensor signal processing.

5. CONCLUSION

Our initial µ-AMPS sensor node prototype demonstrates the effectivenes
power-aware system design methodologies. Inefficiencies of low duty cycle ope
tion are countered with a focus on leakage current and start-up time reduction
variations in processor workload are exploited by dynamic voltage scaling. V
tions in incoming data rate and volume are exploited by energy-agile algorit
whose computational complexity scales with the arrival statistics of the data, a
ing switching energy savings in the hardware. Close collaboration between
hardware and software of a microsensor node result in dramatic energy saving

But the power-awareness philosophy captures more than just energy savings. 
ent to power-awareness is an adaptability to changing environmental condi
and resources, as well as the versatility to prioritize either system lifetime or o
quality at the user’s request. Such flexibility and adaptability are essential ch
teristics of a microsensor node, a system that will be subjected to far more res
workload, and input variability than most electronic devices. As continuing de
opments in VLSI technology reduce the size and increase the functionali
microsensor nodes, we foresee the power-aware design methodology as the
nant enabler for a practical, energy-efficient microsensor node.
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