Algorithmic Transforms for Efficient Energy Scalable Computation

Amit Sinha, Alice Wang and Anantha Chandrakasan
Massachusetts Institute of Technology
Outline

- Motivation
- Energy Scalability Notion
- Examples
 - Filtering
 - Image decoding
 - Detection
- Energy Scalable Video Application
- Dynamic Voltage Scaling
Energy scalability: Tradeoff quality for energy
Maximize quality for given energy availability

Energy Quality ($E-Q$) graph maximally concave
Simple Example

\[y = f(x) = 1 + k_1 x + k_2 x^2 + \cdots + k_N x^N \]

<table>
<thead>
<tr>
<th>Original</th>
<th>Scalable</th>
</tr>
</thead>
</table>
| \(x_{\text{powi}} = 0.0; \)
\(y = 1.0; \)
for(\(i=1; \ i<N; \ i++ \)) {
 \(x_{\text{powi}} *= x; \)
 \(y += x_{\text{powi}}*k[i]; \)
} | if(\(x > 1.0 \)) {
 \(x_{\text{powi}} = \text{pow}(x,N); \)
 \(y = k[N]*x_{\text{powi}}+1; \)
 for(\(i=N-1; \ i>0; \ i-- \)) {
 \(x_{\text{powi}} /= x; \)
 \(y += x_{\text{powi}}*k[i]; \)
 }
} else { //original algo
} |

- Incremental refinement
- Most-significant-first approach
Scalable Filtering

\[y[n] = \sum_{k=0}^{N-1} h[k] x[n-k] \]

Original

Transformed

Re-order Index

Sorted Coeffs
Scalable Filtering E-Q

- 128 Tap FIR filtering on speech data
- StrongARM measurements
 - 5.12µJ per sample
 - 0.21µJ per sample overhead (4%)
Scalable Image Decoding: IDCT

\[x[i, j] = \frac{1}{4} \sum_{u=0}^{7} \sum_{v=0}^{7} c[u]c[v]X[u, v] \cos \left(\frac{(2i+1)u\pi}{16} \right) \cos \left(\frac{(2j+1)v\pi}{16} \right) \]

- Scalability at the cost of slightly more operations
Most Significant DCT Coefficients

- Most energy concentrated in lower coefficients
- Accumulate lower frequency components first
Incremental Refinement: Scalable IDCT

Scalable [FM-IDCT]

Non-Scalable [Chen]
Detection using Beamforming
- Higher SNR and robustness
- Data aggregation \Rightarrow Lesser transmission overhead

Scalable sensor networks
- Adapt to time varying resources
- Graceful $E-Q$ degradation
Unscalable Beamforming

- Use preset order \(<1,2,3,4,5,6>\>
- Determine quality as source moves from A \(\rightarrow\) B
- E-Q performance depends on source location
Scalable Beamforming

- Initial pre-processing improves performance
 - Most significant first transform
 - Determine signals with large SNR
 - Use quick-sort algorithm to obtain order
- Requires low overhead transformation
Dynamic Voltage Scaling

Just-in-time processing:
- Variable power supply & frequency
- Quadratic savings [Gutnik97]
Energy scalable Java based video decoder

- Performs just-in-time computation
- Allows energy-accuracy-throughput tradeoffs
- Uses energy aware software models
Conclusions and Future Work

- **Energy-Quality scalability important**
 - Time varying resources
 - Want highest possible quality for given energy availability

- **Incrementally refining algorithms required**
 - Algorithmic transformations
 - Most significant computations first
 - Nominal preprocessing overhead

- **Dynamic Voltage Scaling gives more savings**

- **OS hints, JIT compilation for energy scalability?**