Part II

Leakage Reduction Techniques
Leakage Reduction Mechanisms

\[I_{\text{leakage}} = I_0 \exp \left(nV_{\text{th}} \right) * \left(1 - \exp \left(\frac{-V_{\text{ds}}}{V_{\text{th}}} \right) \right) \]

- **Increase** \(V_t \)
 - dual threshold Voltage/ MTCMOS/ VTCMOS
- **Increase** \(V_S \)
 - source biasing, self reverse biasing, stack effect
- **Decrease** \(V_G \)
 - Super cut-off CMOS
- **Decrease** \(V_{\text{DS}} \)
 - not practical (CMOS output full rail)
Standby and Active Leakage

- V_t scaling causes exponential increase in leakage currents
- Dynamic power reduced with supply scaling
- Standby periods can be long (Burst Mode operation - cell phone, pager)
- Standby leakage problem more immediate
- Active leakage control can become important too
Source Biasing Principle

- V_t shift due to body effect γ
- V_{GS} becomes negative
- switched source impedance, self reverse biasing, stack effect

$V_D = V_{DD}$
$V_G = 0$
$V_S > 0$ (source bias)
Switched Source Impedance

- R as source impedance
- Estimate >1000X reduction in standby leakage

Fig. 1. Principle of switched-source-impedance CMOS circuit: (a) schematic circuit diagram, (b) mechanism of subthreshold-current reduction.
Self Reverse Biasing

- Off device as source impedance
- Applied to DRAM decoded drivers
- Only one driver turns on (small M_C needed)
- M_{D1}-M_{D2} reverse biased during standby state
- 1000X reduction

Fig. 3. Subthreshold-current-reduced Decoded-Driver by self-reverse biasing. W_C: Gate width of M_C. V_{TC}: Threshold voltage of M_C. ΔV_{SRB}: Self-reverse biasing voltage at the steady state. W_D: Gate width of M_C. V_{TD}: Threshold voltage of M_D. I: Operation current. i: Subthreshold current. n: Number of Decoded-Driver. C: Parasitic capacitance of common source.

Stack Effect By Vector Activation

Activate with predetermined input vector stored in latch

1
0

High leakage vector

1

Low leakage vector

~10X current reduction for 2 stack

Eg. 32-bit static CMOS Kogg-Stone adder ~2X reduction in total leakage current

- limited by number of stacks available
- proper choice of activating vector (NP-hard algorithm -> use of heuristics)
- internal node settling time can be long
- single stacks are still HIGH leakage

Stack Forcing Principle

0.13 μm; 1.5 V

10-30X leakage reduction
~100% higher delay

Force low-\(V_T\) stacks in non-critical paths to reduce leakage
Stack Forcing Effectiveness

32-bit \(\mu \)P instruction decode block 0.13 \(\mu \)m; 1.5 V

Frequency of operation: 1.0 GHz
Active power @ 10% activity: 45.9 mW
All Low-Vt leakage: 39.1 mW
Dual-Vt leakage: 9.0 mW
Forced stack in low-Vt: 13.2 mW
High-Vt usage: 94.2%
Forced stack usage: 70.2%

Leakage power reduction
4.3X with dual-\(V_t \), 3X with stack forcing

Leakage Control Stack Devices

- Single V_t leakage reduction mechanism
- Insertion of extra stack devices (in addition to vector activation)
- Sleep devices can be shared among several gates
- Gives further 35% - 90% reduction compared to state dependence alone
- Boils down to single V_t version of MTCMOS (to be discussed)

Dual V_t CMOS

\[
I_{\text{leakage}} = I_0 \exp \left(nV_{th} \right) \left(1 - \exp \left(-V_{ds} / V_{th} \right) \right)
\]

- Dual V_t more effective at reducing leakage currents than source biasing
- Multiple threshold technologies more common
- For $S=85$ mV/Decade
 - each 255mV shift = 3 orders of magnitude reduction
- Low V_t device= fast, high leakage
- High V_t device= slow, low leakage
- Achieves both Active and Standby leakage reduction
Dual V_t Gate Partitioning

A simple approach: Use Low V_t cells for time-critical paths to improve performance

 Use of LVT in 4% of standard cells yield 6.5% performance improvement

 LVT + HVT improves performance by 12.5% (all LVT causes standby current to be so large as to cause thermal runaway)
Dual \(V_t \) Optimization

- Initially assume all LVT (for best performance)
- Some non-critical gates can be made HVT
- Choice of high \(V_t \) determines mixture
- Proposal for breadth first search algorithm to assign optimal high \(V_t \) value.

A Dual V_t Partitioning Algorithm

- Initially all low V_t
- For each node (gate) in graph calculate
 - Arrival time, Departure time, Propagation delay, graph level
- From output to input (back tracing level-by-level)
 - Determine slack availability for each node in level
 - Gates with enough slack set to high V_t
 - level = level -1
- Simulate and reiterate with other V_t choices

\[\Delta X \text{ (slack)} = T_{\text{max arrv}}(Y) - T_{\text{dep}}(X) + \Delta Y \]

If $\Delta X > 0$, X can be made high V_t

Update graph with new T_p, T_{dep}, ΔX

Move to next node/ level
Advanced Dual V_t Optimization

- Gate level dual V_t -> transistor level dual V_t

 L. Wei, "Mixed-V_{th} (MVT) CMOS Circuit Design Meth. for Low Power Appl," DAC 1999

 - Improved leakage reduction
 - More involved partitioning algorithm (traverse transistors level by level)

- Combine dual V_t with transistor sizing:

 S. Sirichotiyakul, D. Blaauw, "Stand-by Power Minimization through Simultaneous V_t Selection and Circuit Sizing," DAC 1999

 - High V_t to low V_t with same sizing can be too fast
 - Low V_t increases node capacitance seen by crossing paths
 - Use “Dominant Leakage State” + probability to estimate total leakage
 - Too complex to optimize: use heuristic approach
 - 1) Choose some V_t low for performance 2) resize circuit to win back area 3) repeat

![Diagram](image.png)

Figure 4. V_t selection and redistribution of area, two views
CAD for Dual V_t Optimization

- Leakage reduction principle simple
- Difficult to optimally choose parameters V_{th}, V_{tl}, V_{DD}, device selection, transistor sizing
- Need to develop fast, efficient CAD tools
MTCMOS Principle

Active Mode
Low V_t circuit operation (or combined)

Standby Mode
Disconnect power supplies through High V_t devices
- For $S=85$ mV/Decade, $\Delta V_t = 225$ mV
 - ~1000X reduction

Use of LVT sleep with +/- gate (Super Cut-off/ Multi-Voltage CMOS, M. Stan, ISLPED 1998)

For fine grain sleep control
Sequential circuits must retain state

MTCMOS Sleep Sizing

Virtual Ground Bounce
- Gate drive decreases
- Body effect increases V_t
- Reverse conduction noise concerns

Main Design Issue in MTCMOS
- Properly size sleep transistor
Input Vector Impact

<table>
<thead>
<tr>
<th>Vector</th>
<th>CMOS Delay</th>
<th>% Degr (W/L=5.4%)</th>
<th>% Degr (W/L=18%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.58 ns</td>
<td>15.4%</td>
<td>4.6%</td>
</tr>
<tr>
<td>B</td>
<td>2.59 ns</td>
<td>4.7%</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Hierarchical Sizing Approach

- Compute effective sleep resistor for each gate
 - Sets Maximum Gate Degradation
 - Overall delay is guaranteed
- Mutual exclusive gates can share common sleep transistor
- Applied at multiple hierarchical levels

J. Kao, et al., “MTCMOS Hierarchical Sizing Based on Mutual Exclusive Discharge Patterns,” DAC 1998
Gate Clustering

- Cluster gates that have partially overlapping discharge currents
- Group such that Current Budget (to ensure V_x gives 5% degredation) is maintained
- Use operations research clustering techniques
 - Bin Packing
 - assign gate (I_j) to bins so that total current $< I_{\text{max}}$ and #bins minimized
 - Set Partitioning
 - Extension of BP including cost function related to routing complexities

Assumption on predictability of current discharge patterns...

MTCMOS Sleep Sizing TBD

- Need for improved sleep transistor sizing algorithms
- Static, functional timing techniques to better characterize MTCMOS discharge patterns
- Apply ideas from similar CAD research on power /gnd noise
 - + many others …
MTCMOS Sequential Circuits

• MTCMOS Combinational Circuits
 – Simple operation
 – Difficulty in sizing/ distributing sleep transistors

• MTCMOS Sequential Circuits
 – Virtual power/ gnd disconnected during sleep
 • Nodes will float
 – Techniques needed to maintain state
 • Need always powered circuits
 • Must avoid sneak leakage paths
Basic MTCMOS Latch

- Use of always powered CMOS gates

Balloon Flip Flop

- HVT storage “balloon” decoupled from LVT logic
- LVT blocks can share common virtual pwr/gnd
- Elimination of sneak leakage paths
- Complicated signalling

Fig. 9. A balloon circuit applied to a DFF circuit (clock-dependent type).
Sneak Leakage Paths

• Sneak paths from MTCMOS/ CMOS interaction
• Leakage currents from V_{cc} to ground without passing through off high V_{t} device
• Need to utilize:
 – both polarity sleep devices
 – local sleep (non shared sleep devices)
 – novel structures

Sneak Leakage Path From Parallel Combinations

- Need for both polarity high V_t sleep devices
Sneak Leakage Path Through Low Threshold Passgate

- Need for both polarity high \(V_t \) sleep devices
Sneak Leakage Path From Reverse Conduction Paths

- Need for localized, non shared, high V_t sleep devices
Improved MTCMOS Flip Flop

- Careful consideration of sneak leakage paths yields improved implementation
Leakage Feedback Gate

- Sufficient if either VCC or VSS path is cutoff
- Proper cutoff path yields actively driven output
- Low V_t operation + actively driven low leakage state
 - directly imported into CMOS structures
Leakage Feedback Flip Flop

- Virtually no extra loading -> performance is better than standard MTCMOS FF
- Same operation as a CMOS FF
Leakage Feedback Effect

- Output data holds even if input floats
 - held by leakage mismatch
- Potential charge sharing if inputs change
Leakage Induced DC Operating Point

I-V Curves High Vt PMOS and Low Vt NMOS

- Low Vt NMOS
- High Vt PMOS

$V_t = 0.4$

$V_t = 0.2$
MTCMOS / CMOS Interface

- Leakage feedback gate natural interface block between MTCMOS logic and CMOS logic
Dynamic Leakage Feedback FF

- Operates like standard dynamic FF during active mode
- Retains state during the standby mode (held by leakage)
Imbedded Dual V_t

- Logic gates have internal HVT and LVT devices
- No extra series HVT transistor required
- Suppose special case:
 - known sleep configuration
 - one transition direction more critical
Dual V_t Domino Gate

- Evaluate through LVT devices
- Precharge through HVT devices

Clock Delayed Domino Logic

(\(\phi_1\) Pipeline Stage)

- Clock path matches evaluate path
- NMOS series transistors can be eliminated
Leakage In Dual V_t Domino Gate

Sleep condition during evaluate mode
Sleep Mode Condition

- Clear pipeline before sleep
- Put gates in EVALUATION mode
- Inputs to all gates must be high

(Dual V_t domino DATAPATH)
Variable Threshold CMOS (VTCMOS)

- Body effect to change device V_t
- Standby leakage reduction with maximum reverse bias
- Triple well structure

$$V_t = V_{t0} + \gamma\left(\sqrt{2\phi_B} - V_{BB} - \sqrt{2\phi_B}\right)$$
VT.CMOS Example

T. Kuroda, et al, “A 0.9V, 150Mhz, 10mW, 4mm², 2-DCT Core Processor with Variable Vt Scheme, “ JSSC Nov. 1996

- VT.CMOS principle applied to 4-mm² DCT core processor
- SSB increases Vt (more reverse bias)
- SCI decreases Vt (Standby -> Sleep)
- Leakage reduction
 0.1mA active -> 10nA sleep (2.8v ∆VBB)
 4 orders of magnitude
- Dynamically tunes Vt (by matching leakage current monitor) to minimize Vt variation

Fig. 3. VT block diagram.

Fig. 4. Substrate-bias control in VT.
VTCMOS Pros/Cons

PROS:
- Significant standby leakage reduction
- Memory elements retain state
- No transistor sizing/ partitioning required
- **Dynamically tunable** V_t **during runtime**

CONS:
- Requires expensive triple well process
- Body factor decreases with scaling

- Dynamically tune V_t so that critical path speed matched clock period
- Reduces chip-to-chip parameter variations
- Reverse bias:
 - Operate only as fast as necessary (reduces excess active leakage)
- Forward bias:
 - Speeds up slow chips
- Standby leakage with maximum reverse bias
- Also known as Adaptive Body Biasing (ABB)
Adaptive Supply & Body Bias (ASB)

- Dynamically tune both V_{DD} & V_t as operating conditions change
- Trade-off between dynamic power (V_{DD} knob), leakage power (V_t)
- Minimize total ACTIVE power consumption
 (higher active leakage current at expense of lowering dynamic power)

Power vs. V_{DD} (implicit V_t) for fixed frequency

Optimal V_{DD}/V_T Selection

- Optimal V_{DD} & V_T target changes with operating conditions
 - e.g. Varying Workload
- Low frequencies high V_T more optimal
 - reduce leakage at expense of increased dynamic
- High Frequencies low V_{DD} more optimal
 - reduce dynamic at expense of increased leakage
V_{DD}/V_T Optimization vs. DVS

- Dynamic voltage scaling ignores V_T influence
- DVS is sub-optimal over the frequency range
Summary

- Subthreshold leakage currents will grow exponentially
- Need to manage during STANDBY and ACTIVE
- Three main principles
 - Source Biasing
 - Multiple threshold voltage
 - Body biasing
- Need for CAD tools to model leakage currents
- Need for CAD tools to implement leakage reduction principles