Substrate Noise Analysis and Experimental Verification for the Efficient Noise Prediction of a Digital PLL

Nisha Checka, Anantha Chandrakasan, Rafael Reif

Microsystems Technology Laboratory, MIT
60 Vassar St. Rm. 39-625
Cambridge, MA, (USA) 02139
Outline

- Background
- Conventional substrate noise simulation
- Noise macromodels
- Substrate Noise Analysis Tool (SNAT)
 - Overview
 - Measurement comparison
- Summary
Background: Noise Generation

- Digital circuits inject noise into substrate during high speed switching
- Noise Sources:
 - Vdd/gnd bounce
 - Switching inputs/outputs
 - Bulk current
Background: Noise Generation

- Noise travels to analog section via conductive substrate
- Effect on analog circuits: power/gnd noise, pick-up through depletion capacitances, vary bias through V_T fluctuation, backgate effect
Motivation

- UWB transceiver chip
 - TSMC 0.18 μm mixed mode process

Figures courtesy F. Lee
Model needs to be simplified to yield reasonable simulation times

Solution: Extract noise behavior into equivalent macromodel
Noise Macromodel Derivation

- Represent each noise source with equivalent source in macromodel
 - Represent V_{dd}/gnd bounce with I_{VDD} and I_{VSS} and Z_{VDD} and Z_{GND}
 - Represent switching inputs/outputs with V_{sw} and Z_{INT}
 - Represent bulk current with I_{BULK}

- C_D represents circuit decoupling capacitance

Based on (Badaroglu et.al., JSSC vol.37, no.11)
Substrate Noise Analysis Tool

- **Inputs**
 - Circuit description: netlist or gate level description
 - Technology information: as detailed as substrate doping profiles, as coarse as substrate resistivity and type

- **Outputs:**
 - Time domain substrate noise
 - Noise spectrum
Granularity Level

- **Inputs: Circuit Description**

<table>
<thead>
<tr>
<th>Short Run Time</th>
<th>Increasing Accuracy</th>
<th>Long Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least Descriptive</td>
<td></td>
<td>Most Descriptive</td>
</tr>
</tbody>
</table>

 - Gate level netlist
 - SPICE netlist
 - SPICE netlist w/ parasitics

  ```
  module adder(A,B,Cin,S,Cout);
  input A, B, Cin;  output S, Cout;
  assign S = A ^ B ^ Cin;
  assign Cout = (A & B) | (A & Cin) | (B & Cin);
  endmodule
  ```

- **Inputs: Technology Description**

<table>
<thead>
<tr>
<th>Short Run Time</th>
<th>Increasing Accuracy</th>
<th>Long Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least Descriptive</td>
<td></td>
<td>Most Descriptive</td>
</tr>
</tbody>
</table>

 - Substrate resistivity (no layout information)
 - Substrate resistivity (w/ contacts layout)
 - Substrate doping profile (full layout)
Measurement Comparison

- Test circuit: Digital PLL (~ 15K gates)
 - Designed in TI’s 90nm technology
 - $f_{\text{clkref}} = 80$ MHz, $f_{\text{out}} = 480$ MHz
 - Substrate noise sensors added around DPLL
Granularity Levels

- **Inputs: Circuit Description**
 - Short Run Time (Least Descriptive)
 - Increasing Accuracy
 - SPICE netlist (Nanosim level 2)
 - SPICE netlist (Nanosim level 1)
 - SPICE netlist w/ parasitics (Nanosim level 1)
 - Mimic gate level netlist

- **Inputs: Technology Description**
 - Short Run Time (Least Descriptive)
 - Increasing Accuracy
 - Substrate resistivity (no layout)
 - Substrate resistivity (w/ contacts layout)
 - Substrate doping profile (full layout)
 - SNAT generated
 - SNAT generated
 - SubstrateStorm
Noise Spectrum

- Top sensor
- SNAT Simulation:
 - Technology Description: SubstrateStorm generated model
 - ~ 30 minutes to generate netlist
 - ~ 51 hours to simulate
 - Circuit Description: SPICE netlist (no parasitics)
 - ~ 6 minutes

Comparison of Measurements and SNAT Simulation

![Graph showing comparison of measurements and SNAT simulation](image)
Error

- Most error at 80 MHz (f_{clkref}) and 480 MHz (f_{out})
Parasitics

- Incorporate effect of pad parasitics – REFCLK pad and CLKOUT pad
 - Pad to substrate capacitance
 - Capacitance to substrate of ESD structures
- Highest accuracy level – 11.7% error in RMS voltage

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>11.7%</td>
</tr>
<tr>
<td>500</td>
<td>0%</td>
</tr>
<tr>
<td>1000</td>
<td>0%</td>
</tr>
</tbody>
</table>

![Sensor 1 - Percent Error from Measurements](image_url)
Noise Spectrum

- **Top sensor**
- **SNAT Simulation:**
 - Technology Description: SubstrateStorm generated model
 - ~30 minutes to generate netlist
 - ~51 hours to simulate
 - Circuit Description: SPICE netlist with parasitics
 - ~6 minutes

Comparison of Measurements and SNAT Simulation

> 11.7% error in RMS voltage
Effect of Substrate Model
Granularity Levels

- Inputs: Circuit Description
 - Short Run Time
 - Least Descriptive
 - Increasing Accuracy
 - SPICE netlist (Nanosim level 2)
 - Mimic gate level netlist
 - Long Run Time
 - Most Descriptive

- Inputs: Technology Description
 - Short Run Time
 - Least Descriptive
 - Increasing Accuracy
 - Substrate resistivity (no layout)
 - SNAT generated
 - Substrate resistivity (w/ contacts layout)
 - SNAT generated
 - Long Run Time
 - Most Descriptive
 - Substrate doping profile (full layout)
 - SubstrateStorm
Substrate Model

Substrate Transfer Functions

Gain (dB)

Frequency (MHz)
Substrate Model

- SNAT does not consider capacitive effects of wells and junctions
 - Treats substrate as purely resistive
- Parasitics included
- SNAT-generated substrate model (<15 mins) vs. SubstrateStorm-generated model (51+ hrs)

Percent Error from Measurements (Different Substrate Models)

![Graph showing error vs. frequency for different substrate models.](image-url)
Substrate Model

- SNAT does not consider capacitive effects of wells and junctions
 - Treats substrate as purely resistive
Error

- Parasitics included
- SNAT-generated substrate model (<15 mins) vs. SubstrateStorm-generated model (51+ hrs)
Time Domain – Effect of Substrate Model

Simulated Substrate Noise Voltage (Different Substrate Models)

- Time (ns)
- Voltage (mV)

lev8
lev10
Substrate Model

- SNAT does not consider capacitive effects of wells and junctions
 - Treats substrate as purely resistive
Substrate Model

- SNAT does not consider capacitive effects of wells and junctions
 - Treats substrate as purely resistive
Error

- Parasitics included
- Substrate models:
 - SNAT + no layout substrate model (<10 seconds)
 - SNAT + layout substrate model (<15 mins)
 - SubstrateStorm generated model (51+ hrs)

Percent Error from Measurements (Different Substrate Models)

455% error
Measurement Comparison

- Test circuit: Digital PLL (~ 15K gates)
 - Designed in TI’s 90nm technology
 - $f_{\text{clkref}} = 80$ MHz, $f_{\text{out}} = 480$ MHz
 - Substrate noise sensors added around DPLL
Right Sensor

- Substrate transfer function varies with sensor location
Summary

- Substrate Noise Analysis Tool (SNAT)
 - Works at any point in design cycle
 - Measured substrate noise performance of the TI DPLL
 - 11.7% error in RMS voltage
 - Can achieve a dramatic speed-up in run-time with a doubling in the error
 - Coarsest macromodel simulation can get used to yield noise order of magnitude estimate in minutes
Acknowledgements

- MARCO Interconnect Focus Center
- Texas Instruments, Inc.
 - Fellowship support
 - Neeraj Nayak, Mohamed Mahmoud, Chris Barr, Baher Haroun
Macromodel Simulation

Original circuit

Equivalent Macromodel
Example

- Granularity level
 - Circuit: gate level netlist

Example: One bit adder

Replace each cell with equivalent macromodel
Noise Simulation

- Represent each digital block with equivalent macromodel
- Construct macromodel for entire chip

Sample macromodel for entire digital system (assuming epi substrate)