A 500MS/s 5b ADC in 65nm CMOS

Brian P. Ginsburg and Anantha P. Chandrakasan
Massachusetts Institute of Technology Microsystems Technology Laboratory

Symposium on VLSI Circuits
Honolulu, HI
June 16, 2006
Table of Contents

• Introduction and Architecture Selection
• Circuit Design
 – Split capacitor array
 – Optimized latch strobing
• Measured Results
• Conclusion
Ultra-Wideband Radio

- FCC specifications
 - >500MHz 10dB bandwidth
 - Very low average power density
- Research targets a system that transmits pulses in 500MHz channels.

Specifications: 5b, 500MS/s
Architecture Selection

- Flash is traditional architecture for 500MS/s, 5b operation
 - Exponential # of comparators
- Successive approximation register (SAR) architecture
 - Linear # of comparisons
 - Feedforward comparator
 - Time-interleaving required for throughput

Energy model comparison in 0.18µm CMOS

- SAR
- Flash

Energy conversion (normalized)

Resolution (bits)

2 4 6 8
Architecture: Parallel SAR

- All critical sampling edges aligned to common 500MHz clock.
- Start token and clock are the only synchronization between channels.
Technology Considerations

• Challenges
 – Reduced power supplies (1.2V maximum)
 – Increased device variation/mismatch
 – Lower output impedance

• SAR architecture well suited to advanced processes
 – Use non-minimum length transistors throughout comparator to improve matching and $g_m r_o$.
 – NMOS only sampling with low reference voltage of 0.4V.
 – Fully static CMOS digital implementation for SAR controller
Conventional Capacitor Array

- b-binary weighted capacitors with an extra unit capacitor.
- Samples the input and used as the feedback DAC during bit decisions:

\[V_X = V_{MID} - V_{IN} + \sum_{i=0}^{b-1} 2^i d_i C_0 \left/ \frac{2^b C_0}{V_{REF}} \right. \]
Split Capacitor Array

- MSB capacitor replaced with sub-array that is identical copy to the rest of the array.
- Total array capacitance and area requirements unchanged.
- Theoretical analysis in [Ginsburg, ISCAS 2005]
Split Capacitor Switching Technique

Conventional Array

\[E_{1 \rightarrow 2}^{UP} = \frac{1}{4} C_0 V_{REF}^2 \]

\[E_{1 \rightarrow 2}^{DOWN} = \frac{5}{4} C_0 V_{REF}^2 \]

Split Array

\[
\begin{align*}
V_{REF} & \quad C_2 \\
V_2 & \quad C_1 \\
V_X & \quad C_0 \\
\end{align*}
\]
Split Capacitor Switching Technique

Conventional Array

\[E_{UP}^{1 \rightarrow 2} = \frac{1}{4} C_0 V_{REF}^2 \]

\[E_{DOWN}^{1 \rightarrow 2} = \frac{5}{4} C_0 V_{REF}^2 \]

Split Array

\[E_{UP}^{1 \rightarrow 2} = \frac{1}{4} C_0 V_{REF}^2 \]

\[E_{DOWN}^{1 \rightarrow 2} = \frac{1}{4} C_0 V_{REF}^2 \]

Reduces switching energy drawn from \(V_{REF} \) by 37%.
Capacitor Array Settling Time

- A “down” transition requires two switching events, which, for the conventional capacitor array, can be mismatched in time.

Up to 10% speed improvement
Comparator

- Preamplifiers’ gain and speed requirement set to amplify input beyond offset of the regenerative latch within the settling period.
- Preamplifier offset reduced through output offset storage.

Latch typically resolves quickly.
Optimized Latch Strobing

• Delay the onset of latch regeneration, shifting time from the end of the period to the beginning.
• Preamplifier currents can be reduced without sacrificing linearity.
Delay Detection

• The delay can be fine tuned using an on-chip circuit combined with an off-chip FSM.
• On-chip, an FSM would require a counter and simple logic to adjust the delay for a desirable bit error rate.
Prototype

• Prototype fabricated in digital 65nm CMOS.
 – Interdigitated metal comb capacitors

![Diagram of channel with conventional capacitor array]
Static Results

- Code density test at 500MS/s
 - Split capacitor array shows no linearity degradation versus conventional array.

Measured ADC linearity

31% savings in switching energy from V_{REF} supply
Latch Delay Detection

- For 500MS/s operation, optimal delay step is 0 or 1 \((P_e << 10^{-6}) \), which extend analog settling by 10%.
- At 250MS/s clock frequency, setting the delay optimally improves SNDR by 1dB.
Dynamic Performance (500 MS/s)

Nyquist performance; time-interleaving spur power still below total noise power at 250MHz input
Power consumption

- Full Nyquist performance at 4 ENOB
- At peak performance, analog and digital power supplies each use 3mW.
- Peak energy efficiency at lower voltage/speed
Conclusions

• Successive approximation register architecture well suited for deep sub-micron CMOS.
• Charge conservation techniques can reduce power and improve speed in mixed signal circuits.
• Joint timing optimization of analog and digital improves performance.
Acknowledgments

• Texas Instruments for chip fabrication
• NDSEG Fellowship
• DARPA