(RMO4A-2)

An Energy Efficient OOK Transceiver for Wireless Sensor Networks

Denis C. Daly and Anantha P. Chandrakasan

Massachusetts Institute of Technology 50 Vassar St. Room 38-107 Cambridge, MA, USA 02139

Outline

- System overview
- Receiver front end optimization
- Circuit implementation
- Measurement results

Transceivers for Sensor Networks

- Sensor network specifications:
 - Closely spaced nodes: ~10 meters apart
 - Average power: 10 μW to a few mW
 - Data rate: <10 kbps</p>
- Both power and energy efficiency critical
- Transceiver must be duty cycled

Goal: To design a custom, energy-efficient wireless transceiver for wireless sensor networks

Architecture

- On-off keying (OOK) modulation
- 1 Mbps at 916.5 MHz carrier

Architecture

Advantages

- Fast RX startup time
- No oscillator required for receiver
- Receiver circuit power scales with gain
- No PLL required for transmitter

Disadvantages

- Higher SNR required
- Single channel is susceptible to interferers
- Requires offchip SAW components
- Significant RF gain is required in receiver

Scalable Receiver

RF and baseband gain scalable to achieve optimum energy efficiency

RF Gain - Untuned vs. Tuned

 What is the most energy efficient way to generate 45dB of RF gain?

Untuned RF gain

Tuned RF gain

Untuned RF Amplifier

Resistors sized for noise constraints

Input ac coupling capacitor at source allows for minimal gain reduction due to parasitics

Input low frequency noise filtered

RF Gain - Optimization

Efficiency Metric:

 $\frac{\log(Gain)}{Power}$

Efficiency of untuned gain

Efficiency of tuned gain

Comparable efficiency to tuned gain

RF Front End Architecture

Early stages supplied additional current to meet noise constraints

Envelope Detector

- Envelope detector is a differential pair, with the output at the source terminal
- There are multiple inputs, each corresponding to a different RF gain setting

Baseband Amplifier and ADC

- 3-stage baseband amplifier
- ADC is 8 MSPS, 3-bit flash converter

Open-loop amplifiers with passive offset compensation for low power operation

Transmitter

- Mixer integrated with power amplifier
- Scalable P_{out} from -11.4 dBm to -2.2 dBm
- Maximum power efficiency of 6.9%

Die Photo

1.3mm by 1.4mm
Active Area: 0.27mm²

Measured Results

Specifications											
Data Rate	1 Mbps										
Center Frequency	916.5 MHz										
Technology	0.18μm CMOS										
Die Area	1.3mm by 1.4mm										
Receiver (5 gain settings)											
Power consumption (mW)	2.6		2.4		1.7		1.2			0.5	
Sensitivity at 10 ⁻³ BER (dBm)	-65		-62		-58		-49			-37	
Startup time	2.5μs										
Transmitter (7 power settings)											
Power consumption (mW)	3.8	4.8		5.8	6.7 7.6 8.3		8.3		9.1		
Output Power (dBm)	-11.4	-7.2	2	-4.9	-3.6	-2	2.9	-2.4		-2.2	
Startup time	<60μs										

Receiver Results

Rectifier output versus RF input power

BER versus RF input power

BER limited by RF noise, not gain at small input power levels

Transmitter Results

Transient Response

 Data is Manchester encoded to remove do content

Energy Per Bit Ratio

- For 50 bit packet, startup energy overhead:
 - RX overhead of 5%, TX overhead of 25%

RFIC - San Francisco June 11-13, 2006

Summary

- An energy-efficient, highly scalable transceiver has been designed for sensor networks
- It achieves a minimum energy per bit ratio of:
 0.5 nJ/bit for the RX and 3.8 nJ/bit for the TX
- The architecture lends itself well to process scaling

Acknowledgements

- DARPA PAC/C
- National Semiconductor for chip fabrication
- NSERC Postgraduate Scholarship

