A 0.4-V UWB Baseband Processor

Vivienne Sze
Anantha P. Chandrakasan
Massachusetts Institute of Technology

ISLPED – Portland, OR – August 28, 2007
Outline

- UWB Specifications and System Architecture
- Baseband Algorithm and Architecture
- Parallelism for Energy Efficiency
 - aggressive voltage scaling
 - reduced receiver on-time
- Chip Measurements
- Conclusions
Ultra-wideband (UWB) Radio

- Advantages of UWB communications include
 - High Data Rate
 - Excellent Multi-path Resolution
 - Low Interference

- Integrate UWB radios on battery operated devices

- Need an energy efficient UWB System
UWB System Architecture

[Image - 14 Channel Frequency Plan]

[Image - UWB System Architecture Diagram]

Figure courtesy of D. Wentzloff

[F.S. Lee et al., ICUWB 2006]
- **Goal**: Reduce overhead energy (acquisition)
- Majority of acquisition energy spent on computation of cross-correlation
Cross-Correlation Computation

\[y[n] = \sum_{k=0}^{619} h[k] \times x[k - n] \]

- Points can be computed independently
Cross-correlation requires a fixed number of operations

- Reduce energy of each operation in order to reduce baseband energy
- Map operations to architecture that reduces system energy
Exploit **TWO** forms of parallelism in Correlator Bank

- **Ultra-Low Voltage Operation - Maintain Throughput (L)**
 - Reduce supply voltage
 - Minimize energy of baseband processor

- **Reducing Acquisition Time - Parallelized Computation (M)**
 - Reduce receiver on-time
 - Minimize energy of entire receiver (system)
Correlators compute the cross-correlation function

Voltage scaling to reduce energy per operation

Parallelize to maintain throughput of 500 MSPS

Designed and simulated in a 90-nm process
Baseband Energy Savings

- At the **minimum energy point** of 0.3 V → 9X energy reduction
- Set clock frequency to 25 MHz (preamble PRF)
- Parallelize by L=20 to maintain 500 MSPS throughput
- Need to raise voltage to 0.4 V to achieve 25 MHz
- At 0.4 V, reduce energy per operation by 5.8X

\[E_{\text{total}} = E_{\text{active}} + E_{\text{leakage}} \]

\[E_{\text{active}} \propto C_{\text{eff}} V_{DD}^2 \]

\[E_{\text{leakage}} \propto T_{\text{period}} V_{DD} I_{\text{leak}} \]
Summary of Methodology

- Select the optimal degree of parallelism that
 - minimizes energy consumption
 - meets performance constraints

1. Determine VDD_{MEP} (at minimum energy point)

2. Determine delay and throughput at VDD_{MEP}

3. Divide required throughput by the throughput at VDD_{MEP} to obtain the necessary degree of parallelism (L)
System Energy Savings

- Trade-off area for time by mapping to parallel architecture
- Reducing acquisition time allows for fewer number of Gold Code repetitions in the preamble
- RF front-end and ADC can be turned off earlier
- Energy savings across the entire system
Acquisition Energy Reduction

Reduce RF front-end and ADC energy!

14.7X overall reduction

Acquisition Energy
(normalized)

Parallelism (M)

Digital Baseband
ADCs
Baseband Amplifiers
RF front end

[V. Sze, R. Blázquez, M. Bhardwaj, A. Chandrakasan, ICASSP 2006.]
- Demodulation uses a 5-fingered RAKE receiver
- A hard decision is made at the output MRC to resolve a bit
Parallelized Baseband Architecture

Correlator Bank
- Correlator Sub-bank 1
 - Correlator 1
 - Correlator 2
 - ...
 - Correlator L
- Correlator Sub-bank 2
 - Correlator L+1
 - Correlator L+2
 - ...
 - Correlator 2L
- Correlator Sub-bank M
 - Correlator (M-1)L+1
 - Correlator (M-1)L+2
 - ...
 - Correlator ML

Demodulation
- 5-finger RAKE MRC
- 5-finger RAKE MRC
- 5-finger RAKE MRC
- 5-finger RAKE MRC

Demodulated Bits

Timing Control

Channel Estimation

Cross-Correlation Function

Peak Detector

Synchronization/Timing Control

L = 20; M = 31
Total # of correlators = 620
Energy-Area Tradeoff for Digital Baseband Processor

Normalized Baseband Processor Area

Normalized Baseband Processor Energy

9.6x

5.8x

This Design
Energy-Area Tradeoff

Receiver Energy - Digital Baseband Area Tradeoff

- Normalized Receiver Energy
- Normalized Digital Baseband Processor Area

- This Design
- 8.6x
- 14.7x
400-mV Baseband Processor

- STMicroelectronics standard-V_T 90-nm CMOS process
- 281,260 gates
- Includes 620 Correlators & 4 Maximum Ratio Combiners
- Die area: 10.94mm2
 - Active area 23%
Correct Operation at 400 mV

- Oscilloscope plot shows correct functionality at 400mV
 - Note: I/O has a 1V power supply
- Operating frequency of 25 MHz
- Four bits demodulated in parallel every 40-ns cycle
Power Measurements
- Acquisition 7 mW / Demodulation 1.7 mW

Breakdown of Baseband Processor's Energy Per Bit

- Energy per bit (pJ)
- Size of Packet (bits)
- Acquisition Energy
- Demodulation Energy

16.8 pJ/bit
Reduce leakage power using a high V_T “sleep” transistor to gate the leakage current when block is idle

Breakeven time 137 μs
Conclusions

- Reduce energy to receive a UWB packet by
 - Scaling to optimum supply voltage
 - Mapping algorithm to parallel architecture
- Voltage scaling to ultra-low voltage (1 V → 0.4 V)
 - 5.8X reduction in energy per operation of correlators
- Reduced acquisition time
 - 14.7X reduction in receiver acquisition energy
- 400-mV 100 Mbps UWB Baseband Processor
 - 16.8 pJ/bit for demodulation
 - 20 pJ/bit for a 4-kb packet
- Demonstrate high performance at ultra-low voltage
- Can be applied to other high performance communication and signal processing applications
Acknowledgements

- Funding: DARPA and NSERC Fellowship
- Chip Fabrication: STMicroelectronics