An Oscilloscope Array for High-Impedance Device Characterization

Fred Chen, Anantha Chandrakasan, Vladimir Stojanovic

Massachusetts Institute of Technology
Connecting Systems to Emerging Devices

- **Develop Device Models**
 - Enable use for system level exploration

- **Extract Tradeoff Curves**
 - Micro-architect Circuits

- **Make Informed Architecture Choices**

- **Feedback for device research**
 - Ease new device testing/characterization
 - Enables comparison of emerging devices
Traditional Measurement Techniques

- Measurement Limitations
 - Large impedance mismatch
 - Poor power transfer

\[Z_0 \sim 50\Omega \]
\[Z_0 \sim 20k\Omega \]
Traditional Measurement Techniques

- **Measurement Limitations**
 - Large impedance mismatch
 - Poor power transfer
 - Large test parasitic
 - Limits accuracy
 - Limits bandwidth

\[Z_0 \sim 50 \Omega \]
\[Z_0 \sim 20k\Omega \]
Traditional Measurement Techniques

- **Measurement Limitations**
 - Large impedance mismatch
 - Poor power transfer
 - Large test parasitic
 - Limits accuracy
 - Limits bandwidth

- **Physical Test Setup**
 - Cumbersome
 - Difficult to reproduce
 - Limited number of measurements
Create a flexible pad interface
- 16 x 16 array of 52x52μm pads
- Independent 100x100μm transceivers talking to each pad

Adjustable termination impedance to improve power transfer

Reduce pad/interface parasitic
- Improve measurement accuracy – less to de-embed
Silicon Sub-sampling Scope

- DUT creates the ‘channel’ for the link
 - Interface allows for arbitrary connections between pads
- Measure step response (TDR, TDT) using sub-sampling
- Key Challenges:
 - Simultaneously enabling wide bandwidth input with high impedance
 - Accurate measurements with small devices
 - Fine time resolution (10’s ps) with large time range (100’s ns)
Transmitter and Pad

- Large pad capacitance
Transmitter and Pad

- Effectively null out the ~60fF pad capacitance
- Force pad coupling to a known node
- Add dummy driver with similar bandwidth (lower Z) to drive the coupled node
Transmitter and Pad

- Effectively null out the ~60fF pad capacitance
- Force pad coupling to a known node
- Add dummy driver with similar bandwidth (lower Z) to drive the coupled node
Delta-Sigma DAC

- **ΔΣ-DAC Current Filter:**
 - Traditionally requires very large caps & inductors

- **Add voltage filter in current mirror:**
 - Enables lower corner frequency using smaller capacitors
 - 1MHz corner for C1, C2 & C3 ~ 340fF
 - Filter bandwidth dependent on bias current (g_m) – wider as for larger g_m
Receiver

- Adopted from [1] to function rail-to-rail
- Calibration port enables off-line offset calibration

2 20-bit counters in Rx:
- Extract voltage/timing distribution
- 1 million averages to reduce noise by up to 60dB

Timing Generation

- Need fine time resolution over a long period
 - PLL → fine resolution, short period
 - Divided clock → coarse resolution, long periods
- Feed fixed and rotating phases of PLL into dividers
 - Accumulate phase differences at the divider outputs
Measurement Noise

- For each slice in time, sweep voltage to get CDF
- Use PDF to acquire mean voltage
- $30\text{mV}_{\text{p-p}} \sim 3\sigma \rightarrow$ average down to $\sigma \sim 10$'s μV
- Resolution limited by external reference
Delta-Sigma DAC Linearity

- **LSB = 330nA**
- **ENOB = 4.6 bits @ \(f_M = 500\text{MHz} \)**
- **Indicates ~ -35dB filter frequency of 10.3MHz**
Pad Cap Compensation

Step responses at transmitter (7.5kΩ termination):
- Bandwidth of step with compensation is ~ 3X larger than with no pad capacitance nulling
- ~5fF of residual pad capacitance & 15fF of device capacitance

Normalized Step Responses

Normalized Frequency Responses
Carbon Nanotube Step Response

- Measured step response across a sheet of CNTs
 - 30-50μm each over a > 10μm span (A to B)
 - ~6dB loss at Rx
 - Connection automatically detected
Conclusions

- **Silicon test infrastructure for emerging high-impedance devices:**
 - Adjustable termination offers better power transfer
 - Interface parasitic can be better controlled
 - Flexible pad interface for faster detection and repeatable measurements

- **Minimizing Interface Capacitance**
 - Requires small devices → larger variation
 - Variation/error can be corrected with compact & efficient calibration circuitry