A Resolution-Reconfigurable 5-to-10b 0.4-to-1V Power Scalable SAR ADC

Marcus Yip and Anantha P. Chandrakasan

Massachusetts Institute of Technology

ISSCC 2011
Motivation for Scalable ADC

- Bio-potentials vary in bandwidth and dynamic range
- DSP algorithms have varying resolution requirements

<table>
<thead>
<tr>
<th>Bio-potential</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG (electroencephalography)</td>
<td>0.5 to 40 Hz</td>
</tr>
<tr>
<td>ECG (electrocardiography)</td>
<td>0.05 to 100 Hz</td>
</tr>
<tr>
<td>EMG (electromyography)</td>
<td>20 Hz to 2 kHz</td>
</tr>
</tbody>
</table>

Energy-efficient, scalable and reconfigurable ADC is beneficial
Power Scalable SAR ADC

ADC specifications:

<table>
<thead>
<tr>
<th></th>
<th>Resolution</th>
<th>5b to 10b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Rate</td>
<td></td>
<td>0 to 2MS/s</td>
</tr>
</tbody>
</table>

![Diagram of Power Scalable SAR ADC](image)
Power Scalable SAR ADC

ADC specifications:

<table>
<thead>
<tr>
<th></th>
<th>Resolution</th>
<th>Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5b to 10b</td>
<td>0 to 2MS/s</td>
</tr>
</tbody>
</table>

![Diagram of Power Scalable SAR ADC]

- **C_c**: Capacitors for power scalable ADC
- **4b Sub DAC**: 4-bit sub DAC
- **1-6b Main DAC**: 1-6-bit main DAC
- **Dynamic Comparator**: Compares input with DAC output
- **Resolution Scaling Logic**: Adjusts resolution based on input
- **SAR Logic**: Successive Approximation Register
- **Sample Rate Scaling Logic**: Modulates sample rate
- **Boost**: Increases signal for higher precision
- **High-V_T**: High-threshold voltage
- **Leakage Power-Gating**: Reduces leakage current
- **Clock Gate Logic**: Controls clock signals
- **V_DD**: Supply voltage
- **VIN_DIFF**: Input voltage difference
- **SLEEP**: Clock gating to save power
- **CLK**: Clock signal
Power Scalable SAR ADC

ADC specifications:

<table>
<thead>
<tr>
<th></th>
<th>Resolution</th>
<th>Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5b to 10b</td>
<td>0 to 2MS/s</td>
</tr>
</tbody>
</table>

![Diagram of Power Scalable SAR ADC]
Power Scalable SAR ADC

ADC specifications:

<table>
<thead>
<tr>
<th></th>
<th>Resolution</th>
<th>Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>5b to 10b</td>
<td></td>
</tr>
<tr>
<td>Sample Rate</td>
<td>0 to 2MS/s</td>
<td></td>
</tr>
</tbody>
</table>
Power Scalable SAR ADC

ADC specifications:

<table>
<thead>
<tr>
<th>Resolution</th>
<th>5b to 10b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Rate</td>
<td>0 to 2MS/s</td>
</tr>
</tbody>
</table>

Diagram showing the components of the SAR ADC.
Power Scalable SAR ADC

ADC specifications:

<table>
<thead>
<tr>
<th>Resolution</th>
<th>5b to 10b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Rate</td>
<td>0 to 2MS/s</td>
</tr>
</tbody>
</table>

Resolution-Reconfigurable DAC

Leakage Power-Gating
Outline

- Reconfigurable DAC Architecture
- Voltage Scaling
- Leakage Power-Gating
- Measured Results
- Conclusion
Review: Sub-DAC

Conventional Binary-Weighted Array → Large MSB to LSB ratio

Main-DAC/Sub-DAC Array → Reduces ratio, saves area/power

\[V_{\text{REF}} \rightarrow \begin{array}{c}
2^9C_0 \quad 2^8C_0 \quad 2^7C_0 \quad 2^6C_0 \quad 2^5C_0 \quad 2^4C_0 \quad 2^3C_0 \quad 2^2C_0 \quad 2C_0 \quad C_0 \\
\end{array} \rightarrow V_{\text{OUT}} \]

\[V_{\text{REF}} \rightarrow \begin{array}{c}
2^4C_0 \quad 2^3C_0 \quad 2^2C_0 \quad 2C_0 \quad C_0 \\
\end{array} \rightarrow V_{\text{OUT}} \]

Main-DAC

\[C_C = \frac{32}{31}C_0 \]

Sub-DAC

\[C_0 \]
Review: Split-Capacitor Array

Example: $V_{REF} = 1V$, $V_{IN} = 0.4V$

Conventional DAC

\[V_{DAC} = 0.5V_{REF} \]

Split-Capacitor DAC

\[V_{DAC} = 0.5V_{REF} \]

Bit Cycle 1 (Up)

\[E_{U,CONV,1} = E_{U,SPLIT,1} = 2C_0V_{REF}^2 \]

Up transitions require the same energy for both arrays
Review: Split-Capacitor Array

Example: $V_{REF} = 1V$, $V_{IN} = 0.4V$

Conventional DAC

$V_{DAC} = 0.25V_{REF}$

Bit Cycle 2 (Down)

$E_{D,CONV,2} = \frac{5}{2} C_0 V_{REF}^2$

Split-Capacitor DAC

[B. Ginsburg, ISCAS’05]

$V_{DAC} = 0.25V_{REF}$

$E_{D,SPLIT,2} = \frac{1}{2} C_0 V_{REF}^2$

Split-Capacitor approach avoids charging capacitors to V_{REF} during down transitions
Split-Capacitor Array DAC with Sub-DAC

Split MSB capacitor into the MSB Sub-Array, identical in structure to the Main Array.
Split-Capacitor Array DAC with Sub-DAC

MSB Sub-Array (5b Main-DAC/4b Sub-DAC)

Main Array (5b Main-DAC/4b Sub-DAC)
10b DAC Switching Energy

10b Conv. Array (Binary Weighted) Avg: 682

10b Split Capacitor Array Avg: 426

Using Sub-DACs

Conventional (5b Main, 5b Sub) Avg: 41

Split (5b Main, 4b Sub in both arrays) Avg: 34
Adding Reconfigurability

- No power reduction by truncation of bits
- Resolution scaling:
 1. Start at MSB \rightarrow power consumption

![Circuit Diagram]

V_{REF} V_{OUT}

- No power reduction by truncation of bits
- Resolution scaling:
 1. Start at MSB \rightarrow power consumption

![Circuit Diagram]

V_{REF} V_{OUT}
Adding Reconfigurability

- No power reduction by truncation of bits
- Resolution scaling:
 1. Start at MSB \rightarrow power consumption
 2. Cycle through to LSB \rightarrow attenuation of DAC output
Reconfigurable DAC

- Interleave **MSB Sub-Array** with **Main Array**
- Insert switches to decouple capacitors as resolution is scaled
Reconfigurable DAC – 8b Mode

<table>
<thead>
<tr>
<th>R[4:0]</th>
<th>00111</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC Configuration</td>
<td>4b Main-DAC, 4b Sub-DAC</td>
</tr>
<tr>
<td>MSB Sub-Array</td>
<td>Split 8C₀ (in red)</td>
</tr>
</tbody>
</table>
Differential DAC Schematic

- **MSB Sub-Array**
- **Main Array**

Top plate sampling switches

Interleaved main-DACs

sub-DAC
Voltage Scaling

\[E_{ADC} \approx E_{DAC} + E_{COMP} + E_{DIG} + E_{LEAK} \]

<table>
<thead>
<tr>
<th>Block</th>
<th>Energy/Conversion</th>
<th>Voltage Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC*</td>
<td>(C_{DAC}(2^N, V_{IN}) \cdot V_{DD}^2)</td>
<td>(V_{DD}^2)</td>
</tr>
<tr>
<td>Comparator</td>
<td>(N \cdot C_L \cdot V_{DD}^2)</td>
<td>(V_{DD}^2)</td>
</tr>
<tr>
<td>Digital</td>
<td>(C_{EFF}(N, V_{IN}) \cdot V_{DD}^2)</td>
<td>(V_{DD}^2)</td>
</tr>
<tr>
<td>Leakage**</td>
<td>(V_{DD} \cdot I_{LEAK} \cdot T_s)</td>
<td>(V_{DD} \cdot e^{kV_{DD}})</td>
</tr>
</tbody>
</table>

* \(V_{REF} = V_{DD} \)

** \(I_{LEAK} \) is exponential with \(V_{DD} \) due to DIBL

ADC Energy-Per-Conversion benefits from voltage scaling
Voltage Scaling and Linearity

- Linearity requirements decrease with resolution
Voltage Scaling and Noise

- Noise requirements decrease with resolution

Leverage voltage scaling with resolution for CV^2 savings
Regenerative Comparator

- 4-bit switched capacitors for 3-σ offset compensation
- Noise degrades ENOB by 1b at 0.5V in 10b mode
Minimum Energy Point

\[E/\text{conversion} \sim C_{\text{EFF}} V_{\text{DD}}^2 + V_{\text{DD}} I_{\text{LEAK}} T_S \]

- Minimum conversion time \((T_S)\) can be limited by:
 - Sampling bandwidth, reference settling, comparator

[Graph showing energy-per-conversion vs. supply voltage

Minimum energy point

[A. Wang, JSSC’05]
Leakage Reduction

- **SLEEP** mode enables sample rate scaling
- Leakage power-gating applied during **SLEEP**
Power Gating Break-Even Point

- **Energy overhead:**
 - Switching gate capacitance: \(E_{SW} = C_G V_{DD}^2 \)
 - Recovery of virtual ground: \(E_{REC} = C_X V_{DD} \Delta V \)

Require: \(E_{REC} + E_{SW} < (P_{\text{leak-active}} - P_{\text{leak-sleep}}) T_{\text{sleep}} \)

Do not Power Gate

Power Gate

![Diagram showing power gating logic](image)
ADC Prototype

65nm Low-Leakage Digital CMOS
Measured INL and DNL
\((V_{DD}=0.6V, f_s=100kS/s)\)

5b Mode

\[+0.11\text{LSB}/-0.01\text{LSB}\]

8b Mode

\[+0.51\text{LSB}/-0.07\text{LSB}\]

10b Mode

\[+0.58\text{LSB}/-0.11\text{LSB}\]
Measured FFT

5b Mode
V_{DD}=0.5V
f_S=60kS/s

8b Mode
V_{DD}=0.55V
f_S=20kS/s

10b Mode
V_{DD}=0.55V
f_S=20kS/s

f_{IN}=29.289kHz
SNDR=30dB
SFDR=44dB

f_{IN}=9.763kHz
SNDR=47dB
SFDR=61dB

f_{IN}=9.763kHz
SNDR=55dB
SFDR=69dB
Measured ENOB

ENOB vs Input Frequency

- **$f_S=1$ MS/s**
- **$V_{DD}=1$ V

- **$f_S=80$ kS/s**
- **$V_{DD}=0.55$ V
Measured Resolution and Voltage Scaling Results

\[FOM = \frac{P}{2f_{IN} \cdot 2^{\text{ENOB}}} \]

Resolution scaled by truncating 10b data

\(f_S = 200kS/s \)
Measured Resolution and Voltage Scaling Results

- Fixed DAC, Constant $V_{DD}=1V$
- Resolution Scaling, Constant $V_{DD}=1V$

1.7X reduction from DAC scaling

Resolution scaled by truncating 10b data

$f_S=200\text{kS/s}$
Measured Resolution and Voltage Scaling Results

- Fixed DAC, Constant $V_{DD}=1V$
- Resolution Scaling, Constant $V_{DD}=1V$
- Resolution and Voltage Scaling

1.7X reduction from DAC scaling
5X reduction from DAC + voltage scaling
Resolution scaled by truncating 10b data

$f_S=200\text{kS/s}$
Optimum Efficiency Point

Graphs showing the relationship between Supply Voltage [V] and Energy-Per-Conversion [pJ], Max. Sampling Frequency [Hz], and FOM [J/conversion-step] for 5b mode, 8b mode, and 10b mode.
Optimum Efficiency Point

CV^2 losses
Optimum Efficiency Point

CV² losses

Increased conversion time
Optimum Efficiency Point

- **CV^2 losses**
- **Max. Sampling Frequency [Hz]**
- **Energy-Per-Conversion [pJ]**
- **FOM [J/conversion-step]**

- **Increased conversion time**
- **Optimum FOM**
Leakage power dominates below 2kS/s.

Leakage power-gating reduces total power by up to 14% at low frequencies.
ADC Performance Summary

<table>
<thead>
<tr>
<th>Active Die Area</th>
<th>0.212 mm² (65nm low-leakage CMOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V_{DD})</td>
<td>0.4V to 1V (differential input range is $\pm V_{DD}$)</td>
</tr>
</tbody>
</table>
| Maximum Sampling Rate (all resolutions) | 5kS/s @ 0.4V
2MS/s @ 1V |
| Resolution Mode | 5b | 6b | 7b | 8b | 9b | 10b |
| INL [LSB] @ 0.6V, 100kS/s | 0.07 | 0.33 | 0.33 | 0.43 | 0.50 | 0.57 |
| DNL [LSB] @ 0.6V, 100kS/s | 0.11 | 0.35 | 0.40 | 0.51 | 0.55 | 0.58 |
| Dynamic Performance @ 0.55V, 20kS/s (*except for 5b data @ 0.5V, 60kS/s) | | | | | | |
| SFDR [dB] @ Nyquist | *44.0 | 48.5 | 54.6 | 61.2 | 63.0 | 68.8 |
| SNDR [dB] @ Nyquist | *30.4 | 36.6 | 41.5 | 47.0 | 51.2 | 55.0 |
| ENOB | *4.77 | 5.79 | 6.60 | 7.51 | 8.21 | 8.84 |
| Power Consumption [nW] | *234 | 116 | 133 | 146 | 159 | 206 |

10 samples tested
Comparison with State-of-the-Art

Data courtesy of B. Murmann, “ADC Performance Survey 1997-2010, [Online]”.

22.4 fJ/conv-step @ 10b
Conclusion

- Power scalable SAR ADC with reconfigurable resolution (5 to 10b)
 - DAC resolution scaling
 - Voltage scaling
- Leakage power-gating important at low sample rates
- Energy-efficient over wide range of resolutions and sample rates

Acknowledgements:
DARPA and NSERC Fellowship,
N. Verma, B. Ginsburg and Cambridge Analog Technologies