An Application-Specific Protocol Architecture for Wireless Microsensor Networks

Wendi Heinzelman
Anantha Chandrakasan and Hari Balakrishnan

Massachusetts Institute of Technology
Microsensor Networks

- Remote monitoring of the environment
 - Surveillance
 - Machine diagnostics

- Relevant parameters:
 - System lifetime (energy efficiency)
 - Quality
 - Latency
The MIT μ-AMPS Project

• Develop energy-optimized solutions
 – Node architecture and radio hardware
 – OS, algorithms and protocols

• Assumptions:
 – Base station far from nodes
 – All nodes energy-constrained
 – Locally, data correlated

Goal: Design protocols for high quality and energy and spectrum efficiency
General-Purpose Protocol Architectures

- **Direct transmission**
 - Power scales as R^n
 - Bandwidth limitations

- **Routing**
 - MTE (Min. Trans. Energy) Routing
 - Multi-step communication
 - Short lifetimes for close nodes

- **Clustering**
 - Cellular model
 - Needs high-energy cluster-head

\[d_{AB}^2 + d_{BC}^2 < d_{AC}^2 \]
LEACH: Energy-Efficient Protocol Architecture

- **Low-Energy Adaptive Clustering Hierarchy**
 - Adaptive, self-configuring cluster formation
 - Localized control for data transfers
 - Low-energy medium access
 - Application-specific data aggregation
Dynamic Clusters

- Cluster-head rotation to evenly distribute energy load
- Adaptive clusters
 - Clusters formed during set-up
 - Scheduled data transfers during steady-state

Cluster-heads = •
Distributed Cluster Formation Algorithm

Choose CH with “loudest” announcement

Using $P_i(t)$

Node i cluster-head?

Yes

Cluster-head Nodes

Announce cluster-head status

Wait for Join-Request messages

Steady-state operation for $t = T_{round}$ seconds

No

Non-CH Nodes

Wait for cluster-head announcements

Send Join-Request message to chosen cluster-head

Choose CH with “loudest” announcement

Autonomous decisions lead to global behavior

• No global control
• Flexible, fault-tolerant
Distributed Cluster Formation

- Assume nodes begin with equal energy
- Design for k clusters per round
- Want to evenly distribute energy load
 ⇨ Each node CH once in N/k rounds

$$E[\# \text{CH}] = \sum_{i=1}^{N} P_i(t) \times 1 = k$$

$k = \text{system param.}$
(Analytical optimum)

$$P_i(t) = \begin{cases} \frac{k}{N - k \ast r \text{ mod}(N/k)} & C_i(t) = 0 \\ 0 & C_i(t) = 1 \end{cases}$$

$C_i(t) = 1 \text{ if node } i \text{ a CH in last } r \text{ rounds}$

- Can determine $P_i(t)$ with unequal node energy
Unequal Initial Energies

\[P_i(t) = \frac{E_i(t)}{E_{total}(t)} k \]

- \(E_i(t) \) = energy of node \(i \) at time \(t \)
- \(E_{total}(t) \) = total energy in system at time \(t \)

High-energy nodes CH more often than low-energy nodes

If nodes begin with \(E_o \)

Cluster-head nodes

- \(E_i(t) \approx E_o - X \)
- \(E_{total} \approx E_o(N-kr) + (E_o-X)kr \)
- \(P_i(t) \approx 0 \)

Non-cluster-head nodes

- \(E_i(t) \approx E_o \)
- \(P_i(t) \approx k/(N-kr) \)
LEACH Steady-State

- Cluster-head coordinates transmissions
 - Time Division Multiple Access (TDMA) schedule
 - Node i transmits once per frame
- Cluster-head broadcasts TDMA schedule
- Low-energy approach
 - No collisions
 - Maximum sleep time
 - Power control
Inter-Cluster Interference

- Transmission in different clusters can collide
 - Nodes minimize transmission power
 - Each cluster has unique spreading code
 - Distributed solution to minimize interference
LEACH Medium Access

ADV
• CSMA
• Large power, small messages

Join-REQ
• CSMA
• Large power, small messages

SCH
• DS-SS code
• Power to reach all members

Data Transfer to Cluster-Head
• TDMA slot (with DS-SS)
• Power to reach CH, large messages
Application-Specific Data Aggregation

- Clusters exhibit spatial locality
 - Local data aggregation
 - Common signal enhanced/noise reduced
- Computation vs. communication tradeoff
 - Depends on cost of computation and communication
 - Signal processing within the network
Base Station Cluster Formation (LEACH-C)

- Get optimal clusters for comparison
- Requires communication with base station
- Need GPS or other location-tracking method

All Nodes
- Send \{ (x_i, y_i, E_i) \} to BS
- Wait for cluster information

Base Station
- Wait for information from nodes
- Determine optimal clusters and send info to nodes
- Clusters Formed

- Only nodes with $E_i > \mu_E$ eligible

- Small packets
- Large energy
Simulation Framework

• Extensions to *ns* network simulator
 – Computation and communication energy models
 • Radio energy
 – StrongARM processor beamforming [A. Wang]
 – New node states
 – Medium access
 – LEACH, LEACH-C, MTE routing, static clustering

\[E_{\text{elec}} \times k \quad \varepsilon_{\text{amp}} \times k \times d^2 \]

Transceiver \quad Tx\ Amplifier \quad Receiver
Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing delay</td>
<td>50 μs</td>
</tr>
<tr>
<td>Bit rate</td>
<td>100 kbps</td>
</tr>
<tr>
<td>Radio electronics</td>
<td>50 nJ/bit</td>
</tr>
<tr>
<td>Transmit amplifier</td>
<td>100 pJ/bit/m2</td>
</tr>
<tr>
<td>Beamforming cost</td>
<td>5 nJ/bit/signal</td>
</tr>
<tr>
<td>Data size</td>
<td>500 bytes</td>
</tr>
</tbody>
</table>
Optimum Number of Clusters

- Too few clusters ⇒ cluster-head nodes far from sensors
- Too many clusters ⇒ not enough local signal processing
Analytical Optimum

k clusters \Rightarrow N/k nodes/cluster:

$E_{CH} = \alpha \frac{N}{k} + \beta$

$E_{non-CH} = \gamma \frac{1}{k} + \delta$

$k_{opt} = \frac{\sqrt{N} \ M}{\sqrt{6} \ d_{toBS}}$

$N=100$
$M=100$
$75 < d_{toBS} < 185$

$\Rightarrow 2 < k_{opt} < 6$

• Simulation agrees with theory
Data per Unit Energy

- LEACH achieves order of magnitude more data per unit energy
 - 2 hops v. 10 hops average
 - Data aggregation successful
- LEACH delivers over 10 times amount of data for any number of node deaths
- Rotating cluster-head effective
Summary

- Microsensor network protocols must be designed for
 - Bandwidth efficiency
 - Energy efficiency
 - High quality

- Application-specific protocol architecture beneficial
 - Most efficient use of limited resources
 - Ideas extendable to other application spaces