WHY IS (111) SILICON A BETTER MECHANICAL MATERIAL FOR MEMS?

Jongpal Kim, Dong-il (Dan) Cho*, Richard S. Muller**
School of Electrical Engineering and Computer Engineering, Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea, *dicho@asri.snu.ac.kr
**Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720-1774, USA

SUMMARY
In this paper, we explain the mechanical properties of single-crystalline silicon with respect to deflectional and torsional motions. Young's modulus, Poisson's ratio, and shear modulus are isotropic on silicon (111), whereas the variations on silicon (100) and (110) are quite significant. We newly derive formulae for bulk shear modulus of silicon (100), (110) and (111) and show that bulk shear modulus differs from conventional shear modulus because of the anisotropic characteristics of single-crystal silicon. Furthermore, we show that the bulk shear modulus (which governs torsional motion) varies minimally on silicon (111), with respect to crystallographic directions, as compared to silicon (100) and (110).

Keywords: (111) silicon, Young’s modulus, Poisson’s ratio, shear modulus, torsional stiffness, bulk shear modulus

INTRODUCTION
Recently, many High Aspect Ratio Structures (HARS) micromachining technologies have been developed using single-crystal silicon, examples include, Single Crystal Reactive Etching And Metalization (SCREAM), Silicon On Insulator (SOI), Dissolved Wafer Process (DWP), Porous Si Method (PSM), and the Surface/Bulk Micromachining (SBM) processes [1-11]. These single-crystalline silicon structures have different mechanical characteristics with respect to crystalline orientation because single-crystalline silicon is an anisotropic material. Young’s modulus, Poisson’s ratio, shear modulus, and bulk shear modulus are material constants that describe mechanical characteristics, and may have different values with respect to crystallographic orientation. Therefore, to properly design devices composed of such silicon based anisotropic materials and for which such mechanical properties are important, the mechanical properties of silicon (100), (110), and (111) were investigated.

YOUNG'S MODULUS, POISSON'S RATIO, AND SHEAR MODULUS
It is well known that Young's modulus, Poisson's ratio, and shear modulus are transversely and vertically isotropic for silicon (111), whereas these vary significantly for silicon (100) and (110) [12, 13]. Young’s modulus, Poisson’s ratio, and shear modulus can be derived from the general Hooke’s law, in which 6 stress components are related to 6 strains by a stiffness matrix containing 3 independent components [14, 15]. As shown in Fig. 1, for silicon (100) and (110), Young’s modulus varies from 130.2 GPa to 187.5 GPa, Poisson’s ratio varies from 0.064 to 0.361, and shear modulus varies from 50.92 GPa to 79.4 GPa. For silicon (111), Young’s modulus is transversely isotropic at 168.9 GPa, regardless of the crystallographic orientation. Poisson’s ratio has a constant value of $\nu_\parallel = 0.262$ for planes parallel to (111), and a constant value of $\nu_\perp = 0.182$ for planes vertical to (111). Shear modulus is also a constant at $G_\parallel = 66.9$ GPa for planes parallel to (111), and $G_\perp = 57.8$ GPa for planes vertical to (111).

TORSIONAL STIFFNESS AND BULK SHEAR MODULUS
Recent interests in optical applications of MEMS have resulted in many micromirrors supported by torsion springs [17]. In torsion beams, the resultant couple of the shear stresses acting over the cross section must be statically equivalent to the internal torque. Using this condition, torsional stiffness k_t can be described as shown in Fig. 2(a), and is proportional to the bulk shear modulus G_{bulk}, boundary condition constant κ, and the polar moment of inertia I_p, and inversely proportional to the spring length L. Bulk shear modulus in a torsion beam with a rectangular cross-section can be derived from
where \(G_\psi \) is the conventional shear modulus, as shown in Fig. 1, \(x \) is the normalized \(x \)-directional coordinate with respect to the spring width, \(y \) is the normalized \(y \)-directional coordinate with respect to the spring thickness, and \(r \) is the aspect ratio of spring thickness to spring width. Bulk shear modulus in terms of angle \(\psi \) can be transformed in terms of normalized coordinates \(x \) and \(y \) by (2).

\[
\tan \psi = \frac{r \cdot y}{x}
\]

From (1), the bulk shear modulus can be derived as (3), (4), and (5) in silicon (100), (110), and (111), respectively. The variable \(\alpha \) represents the angle from the \(<100>\)-axis to the \(<010>\)-axis on the \(<001>\) plane. The variable \(\beta \) represents the angle from the \(<001>\)-axis to the \(<110>\)-axis on the \(<110>\) plane. The variable \(\gamma \) represents the angle from the \(<110>\)-axis to the \(<1-12>\)-axis on the \(<111>\) plane. Compliance coefficient \(S_{44} \) has 1.26x10^{-2}/GPa and \(S_c \) has 0.352x10^{-2}/GPa.

The bulk shear moduli were evaluated and plotted in Fig. 2. In the case of silicon (001), the bulk shear modulus has symmetry on the \(<100>\)-axis, the \(<010>\)-axis, and the \(<110>\)-axis. Regardless of aspect ratio \(r \), the bulk shear modulus on the \(<100>\)-axis and the \(<010>\)-axis always has the value 79.4 GPa. As the aspect ratio approaches 0, the shape of the bulk shear modulus plot converges to that of the shear modulus \(G_\perp \) plot in Fig. 1(e). As the aspect ratio approaches infinity, the shape of the bulk shear modulus plot converges to that of the shear modulus \(G_\parallel \) plot in Fig. 1(f). The maximum difference of bulk shear modulus increases from 21.6 GPa to 23.4 GPa, as the aspect ratio is increased from 1 to 10. The variation of bulk shear modulus in the \(<110>\)-axis becomes 15.8 GPa as the variation of the aspect ratio from 1 to 10. In the case of silicon (111), the bulk shear modulus has repeatability from \(\gamma = 30^\circ \), \(\gamma = 150^\circ \), and \(\gamma = 270^\circ \). As the aspect ratio approaches 0, the shape of the bulk shear modulus plot converges to that of the shear modulus \(G_\perp \) plot in Fig. 1(g). As the aspect ratio approaches infinity, the shape of the bulk shear modulus plot converges to that of the shear modulus \(G_\parallel \) plot in Fig. 1(g). The maximum difference of bulk shear modulus decreased from 19.9 GPa to 4.4 GPa, as the aspect ratio increased from 1 to 10. As tabulated in Table 1, the variations in bulk shear modulus for the three different types of silicon are similar for an aspect ratio of 1. For a higher aspect ratio beam, which is generally used for torsional springs, the variation of (111) silicon is substantially smaller, compared to the other types of silicon examined.

CONCLUSION

Young's modulus, Poisson's ratio, and shear modulus for transverse and vertical motion are independent of device crystallographic orientation, only on silicon (111). Torsional motion is governed by “bulk shear modulus” and device geometry, and the variation of bulk shear modulus with respect to crystallographic orientation is the smallest on silicon (111). Therefore, single-crystal silicon MEMS devices fabricated using (111) silicon will be least sensitive to device orientation with respect to crystallographic orientations. Furthermore, since less restriction is imposed on mask designs with respect to crystallographic orientation, the design task becomes much easier.
\[G_{(100)}^{\text{bulk}}(\alpha, r) = \int_0^{0.5} \int_0^{0.5} \frac{48 \left(x^2 + r^2 y^2 \right)^2}{1 + r^2} dx dy \]

\[G_{(110)}^{\text{bulk}}(\beta, r) = \int_0^{0.5} \int_0^{0.5} \frac{48 \left(x^2 + r^2 y^2 \right)^2}{1 + r^2} \left(S_{xx} + 2S_{xy} \sin^2 \beta \right) dx dy \]

\[G_{(111)}^{\text{bulk}}(\gamma, r) = \int_0^{0.5} \int_0^{0.5} \frac{144 \left(x^2 + r^2 y^2 \right)^2}{1 + r^2} \left(3S_{xx} + 4S_{xy} \right) dx dy \]

Fig. 1: Young's modulus, Poisson's ratio, and shear modulus on silicon (100), (110) and (111).

Fig. 2: Bulk shear modulus of torsion beam with rectangular cross-section in silicon (100), (110) and (111).
Table 1: Bulk shear modulus of torsion beam in silicon (100), (110) and (111).

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[GPa]</td>
<td>(100)</td>
<td>(110)</td>
</tr>
<tr>
<td>r = 1</td>
<td>Max</td>
<td>79.4</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>63.2</td>
<td>57.8</td>
</tr>
<tr>
<td></td>
<td>Variation</td>
<td>16.2</td>
<td>21.6</td>
</tr>
<tr>
<td>R = 10</td>
<td>Max</td>
<td>79.4</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>51.2</td>
<td>56.0</td>
</tr>
<tr>
<td></td>
<td>Variation</td>
<td>28.3</td>
<td>23.4</td>
</tr>
</tbody>
</table>

REFERENCES

