Fully-Scalable 2D THz Radiating Array: A 42-Element Source in 130-nm SiGe with 80-μW Total Radiated Power at 1.01THz

Zhi Hu and Ruonan Han
MIT, Cambridge, MA, USA
Outline

• Motivation and Challenges
• Design of Oscillator
• Formation of 1-THz Oscillating-Radiating Array
• Measurement Results
• Conclusions
Pushing Frequency and Power Limit of THz Radiator

Applications of high-power high-frequency THz source

High-Resolution Imaging
[F. Schuster et al., ISSCC, 2011.]

Bio-Molecule Spectroscopy
[T. Globus et al., Convergent Science Physical Oncology, 2016.]

High-Precision Vibrometry
[G. Bissinger, D. Oliver, Sound & Vibration, 2007.]

Path to high-power 1-THz radiator

- Building coherent radiating array at higher frequency is more challenging
Why Building 1-THz Radiating Array Is Difficult?

1 THz > f_{max} of all silicon-based transistors (fastest: 450 GHz in IHP S13G2)

Efficient high-order harmonic generation and radiation

Antenna array requires $\lambda/2$ spacing

$\sim 70\mu$m x 70μm for each radiating unit

Very limited area to fit in all necessary components

Array scale can be very large

Accumulation of phase error between units due to inter-unit injection can cause severe beam tilting
Call for Compact Multi-Functional Array Unit

Array Unit

- Harmonic Filter
- Oscillator
- 1-THz Antenna
- Phase-Synchronizing Coupler
Our Slotline-Bound-Array Solution

- Differential oscillators plus slotlines accomplish all tasks
 - Each unit oscillates at $f_0 = 250$ GHz and radiates $4f_0 = 1$ THz
Outline

• Motivation and Challenges
• Design of Oscillator
 • Formation of 1-THz Oscillating-Radiating Array
• Measurement Results
• Conclusions
Multi-Functional Array Unit

- Harmonic Filter
- Phase-Synchronizing Coupler
- Oscillator
- 1-THz Antenna

RFIC2017

RTU2B-2
At f_0 (250 GHz), two oscillators are forced to oscillate differentially.

For even-order harmonics from two oscillators, including $4f_0 = 1$ THz:

- They are in-phase, hence repelled from slotline (feedback loop).
- No dissipation at base, more power is delivered outwards.
Maximize Oscillation at f_0 in Single Oscillator

- Phase delay of V_2 should be compensated
 - Intrinsic delay of I_C
 - Undesired feed-forward current I_{feed}
- Use self-feeding topology to adjust phase

$$\angle A_{opt} = \angle V_2 / V_1 = -\left(y_{21} + y_{12}^*\right),$$

$$\varphi_{TL} = \arcsin\left(Z_{TL} \cdot \left(g_{11} + \text{Re}\left(A_{opt} \cdot y_{12} / \text{Im}(A)\right)\right)\right)^{-1}$$

[R. Spence, Linear Active Networks, 1970.]
Outline

• Motivation and Challenges
• Design of Oscillating Unit
• Formation of 1-THz Oscillating-Radiating Array
• Measurement Results
• Conclusions
Expose Oscillation Using Branched Resonator

- Two $\lambda/4 @ f_0$ transmission lines (short \rightarrow open)
- E-shaped pattern composes the boundary of oscillating unit
- Resonator is implemented by slotlines
Structure of a Complete Oscillating Unit

- Oscillators sealed by three resonators
 - Two branched resonators
 - One broadband open
- In-shunt resonators present $Q = 18$
Interface Adjacent Units Using Branched Resonator

- Horizontal slotlines on the border (2x1 case) are merged
- Vertical slotlines on the border (1x2 case) run parallel
Multi-Functional Array Unit

- Harmonic Filter
- Oscillator
- 1-THz Antenna
- Phase-Synchronizing Coupler
Coupling (at f_0) between Horizontally Adjacent Units

Single-Node Injection vs. Distributed Phase Synchronization

\[
\frac{d\theta}{dt} = \omega_0 - \omega_{\text{inj}} - \frac{\omega_0}{2Q} \cdot \frac{V_{\text{inj,p}}}{V_{\text{osc,p}}} \sin \theta \\
= \omega_0 - \omega_{\text{inj}} - \omega_L \sin \theta.
\]

Phase at every point is synced, even if there is mismatch of ω_0.

[B. Razavi, JSSC, 2004.]

RTU2B-2
Coupling (at f_0) between Vertically Adjacent Units

- Branched resonator shared \rightarrow phase relationship determined
- Use slotline for the purpose of array-wide in-phase radiation (discuss later)
Multi-Functional Array Unit

- Harmonic Filter
- Phase-Synchronizing Coupler
- Oscillator
- 1-THz Antenna

RFIC2017
RTU2B-2
Radiation Cancellation at f_0 (250 GHz): Vertical

- Vertical slotlines pairs do not radiate
 - E-field in left and right slotlines balance out
Radiation Cancellation at f_0 (250 GHz): Horizontal

- Horizontal slotlines pairs do not radiate
 - E-field in left and right slotlines balance out

Antenna Gain at f_0:

- -66 dBi
Radiation Cancellation at $2f_0$ (500 GHz): Horizontal

- Horizontal slotlines do not radiate
 - E-field in central slotlines balance out with top/bottom slotlines
Radiation Cancellation at $2f_0$ (500 GHz): Vertical

- Vertical slotlines pairs do not radiate
 - E-field in left and right slotlines balance out
Radiation Cancellation at $3f_0$ (750 GHz)

- Horizontal slotlines pairs do not radiate
 - E-field in left and right slotlines balance out
Radiation Cancellation at $3f_0$ (750 GHz)

- Vertical slotlines pairs do not radiate
 - E-field in left and right slotlines balance out

Antenna Gain at $3f_0$
Multi-Functional Array Unit

Array Unit

- Harmonic Filter
- Oscillator
- 1-THz Antenna
- Phase-Synchronizing Coupler
Radiation at $4f_0$ (1 THz) from Single Unit

- All horizontal slotlines pairs radiate in-phase
- Vertical slotlines do not radiate

Antenna Gain at $4f_0$
1-THz Radiating Array

- In-phase radiation from all units is achieved by CPW and slotline coupling

- 1-THz antennas are spaced by $\lambda/2$ in both horizontal and vertical directions

- Equivalently, the array is like an “active planar wave front” with big aperture underpinned by transistors
Outline

• Motivation and Challenges
• Design of Oscillator
• Formation of 1-THz Oscillating-Radiating Array
• Measurement Results
• Conclusions
SiGe Chip Prototype

• **Technology:** IHP S13G2 SiGe BiCMOS
 – $f_{\text{max}} = 450$ GHz

• **Area:** 1 mm2

• **Array scale**
 – 42 units
 – 91 antennas

• **DC Power:** 1.1 W
Chip is attached to a half-ball silicon lens and radiates into backside.

Due to device mismatch, there will be little of f_0 wave leaking out, with which we can confirm f_0 and hence $4f_0$.

$f_0 = 16f_{LO} + f_{offset}$
Measurement of Total Radiated Power

- Total radiated power of 1 THz (from ZBD): 80μW (-11dBm)
Measurement of Total Radiated Power

- Total radiated power of 1 THz (from ZBD): 80μW (-11dBm)
- Total radiated power of all harmonics (from TK): 100μW
Measurement of Radiation Pattern

- Measured using zero-bias diode detector
- Peak directivity: 24dBi
- EIRP: 13dBm
Performance Comparison

<table>
<thead>
<tr>
<th>Reference</th>
<th>This Work</th>
<th>MTT2015</th>
<th>ISSCC2011</th>
<th>ISSCC2016</th>
<th>VLSI 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Type</td>
<td>Oscillator Array (4f₀)</td>
<td>Active Multiplier (6f₀)</td>
<td>Active Multiplier (5f₀)</td>
<td>Passive Multiplier (10f₀)</td>
<td>Passive Multiplier (5f₀)</td>
</tr>
<tr>
<td>Output Frequency (THz)</td>
<td>1.01</td>
<td>0.99</td>
<td>0.82</td>
<td>1.33</td>
<td>0.73</td>
</tr>
<tr>
<td>Radiated Power (dBm)</td>
<td>-10.9</td>
<td>N/A</td>
<td>N/A</td>
<td>-22.7</td>
<td>-21.3</td>
</tr>
<tr>
<td>EIRP (dBm)</td>
<td>13.1</td>
<td>-37</td>
<td>-17</td>
<td>-13</td>
<td>-22.2</td>
</tr>
<tr>
<td>Input RF Power (dBm)</td>
<td>N/A</td>
<td>8</td>
<td>14</td>
<td>18</td>
<td>13.8</td>
</tr>
<tr>
<td>DC Power (W)</td>
<td>1.1</td>
<td>4</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chip Area (mm²)</td>
<td>1.00</td>
<td>3.28</td>
<td>3.22</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>Technology</td>
<td>0.13μm SiGe</td>
<td>0.25μm SiGe</td>
<td>0.25μm SiGe</td>
<td>65nm CMOS</td>
<td>65nm CMOS</td>
</tr>
</tbody>
</table>

- Highest total radiated power
- Highest EIRP
Conclusions

- A high-power 1-THz radiator featuring 2D-coupled array architecture
 - Large array scale
 - Directive radiated beam

- Compact multi-functional structure will be an important component in future THz circuits
Acknowledgements

- Analog Devices Inc.
- MIT/MTL GaN Energy Initiative
- MIT Center for Integrated Circuits and Systems (CICS)
- Singapore-MIT Alliance for Research and Technology (SMART)
- Prof. Qing Hu at MIT for chip testing support
- Dr. Mehmet Kaynak at Leibniz-Institut für innovative Mikroelektronik (IHP) for chip fabrication support
Fully-Scalable 2D THz Radiating Array: A 42-Element Source in 130-nm SiGe with 80-μW Total Radiated Power at 1.01THz

Zhi Hu and Ruonan Han
MIT, Cambridge, MA, USA