Performance Analysis of Ultra-Scaled InAs HEMTs

Neerav Kharche¹, Gerhard Klimeck¹, Dae-Hyun Kim²,³, Jesús. A. del Alamo², and Mathieu Luisier¹

¹Network for Computational Nanotechnology and Birck Nanotechnology Center, Purdue University
²Microsystems Technology Labs, Massachusetts Institute of Technology
³Teledyne Scientific & Imaging, LLC
Motivation: Towards III-V MOSFET

- Strained channel
- New gate dielectrics
- Device geometries
- Channel materials
- High-k dielectrics

2015-2019 Research

III-V channel devices

Low-power & high-speed

Acknowledgement: Robert Chau, Intel
Motivation: Why III-V HEMTs?

- **III-V**: Extraordinary electron transport properties
- **HEMTs**: Very similar structure to MOSFETs except high-κ dielectric layer
- **Excellent to Test Performances** of III-V material without interface defects
- **Excellent to Test Simulation Models**
 - Develop simulation tools and benchmark with experiments
 - Predict performance of ultra-scaled devices

2007: 40nm

2008: 30nm

D.H. Kim et al., *EDL* 29, 830 (2008)
Outline

- Motivation
- Modeling Approach
 - Real-space EM simulator including gate leakage
 - Atomistic tight-binding m^*
 - Realistic description of simulation domain (gate geometry)
- Comparison to Experiments $L_g=30, 40, 50\text{nm}$
 - Material parameters, I_d-V_{gs}, I_d-V_{ds}
- Scaling Considerations for $L_g=20\text{nm}$
 - Channel thickness, Insulator thickness, Gate metal work function
- HEMT Simulator on nanoHUB.org
- Conclusion and Outlook
Outline

• Motivation

• Modeling Approach
 – Real-space EM simulator including gate leakage
 – Atomistic tight-binding m^*
 – Realistic description of simulation domain (gate geometry)

• Comparison to Experiments $L_g=30$, 40, 50nm
 – Material parameters, I_d-V_{gs}, I_d-V_{ds}

• Scaling Considerations for $L_g=20$nm
 – Channel thickness, Insulator thickness, Gate metal work function

• HEMT Simulator on nanoHUB.org

• Conclusion and Outlook
Device Geometry and Simulation Domain

- **Intrinsic device**
 - Near gate contact
 - Self consistent 2D Schrodinger-Poisson
 - Electrons injected from all contacts

- **Extrinsic source/drain contacts**
 - Series resistances R_S and R_D

Gate Geometry and Gate Leakage Current

1) Include series resistances
\[V_{gs}^{ext} = V_{gs}^{int} + I_d R_s \]
\[V_{ds}^{ext} = V_{ds}^{int} + I_d (R_s + R_d) \]

2) Include gate leakage current
\[(E-H-\Sigma_s-\Sigma_D-\Sigma^G)\cdot C = (S^s + S^D + S^G) \]

3) Include the proper gate geometry flat (a) or curved (b)

Gate leakage reduced in curved gate device
Accurate Effective Mass Calculation

Full-Band Transport:
- Strain, Disorder, Non-parabolicity, BTBT
- No gate leakage, Computationally very intensive

Effective Mass Transport:
- Gate leakage, Computationally efficient
- Parabolic bands, No disorder, Wrong quantization levels

Import m^*

![Diagram](image.png)

- InGaAs (2nm) InAlAs (11nm)
- InAs (5nm)
- Electronic domain
- InGaAs (3nm)
- InAlAs (40nm)
- Strain domain

~ 4 nm

$L_x = L_z = 3.5$ nm
Outline

• Motivation
• Modeling Approach
 – Real-space EM simulator including gate leakage
 – Atomistic tight-binding m
 – Realistic description of simulation domain (gate geometry)
• Comparison to Experiments $L_g=30, 40, 50\text{nm}$
 – Material parameters, I_d-V_{gs}, I_d-V_{ds}
• Scaling Considerations for $L_g=20\text{nm}$
 – Channel thickness, Insulator thickness, Gate metal work function
• HEMT Simulator on nanoHUB.org
• Conclusion and Outlook
Transfer Characteristics: $I_d - V_{gs}$

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial</th>
<th>Final parameter set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>L_g [nm]</td>
<td>30, 40, 50</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51.25</td>
</tr>
<tr>
<td>t_{ins} [nm]</td>
<td>4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Φ_M [eV]</td>
<td>4.7</td>
<td>4.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.68</td>
</tr>
<tr>
<td>$m^*_\text{ins (InAlAs)}$</td>
<td>0.075</td>
<td>0.0783</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0783</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0783</td>
</tr>
<tr>
<td>$m^*_\text{buf (InGaAs)}$</td>
<td>0.041</td>
<td>0.0430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0430</td>
</tr>
</tbody>
</table>
Conclusion:
- Good agreement for all L_g’s
- Less ballistic at $L_g=50\text{nm}$
- Use models and material parameters to design ultra-scaled devices ($L_g=20\text{nm}$)
Outline

- Motivation
- Modeling Approach
 - Real-space EM simulator including gate leakage
 - Atomistic tight-binding m*
 - Realistic description of simulation domain (gate geometry)
- Comparison to Experiments $L_g=30, 40, 50\text{nm}$
 - Material parameters, I_d-V_{gs}, I_d-V_{ds}
- **Scaling Considerations for $L_g=20\text{nm}$**
 - Channel thickness, Insulator thickness, Gate metal work function
- HEMT Simulator on nanoHUB.org
- Conclusion and Outlook
What can be changed?

- Gate geometry
- Channel thickness scaling: t_{InAs}
- Insulator thickness scaling: t_{ins}
- Metal work function engineering: Φ_M

Better control of surface potential
Gate leakage reduction and E-mode operation

$L_g = 20\text{nm}$
InAs (Channel) Layer Thickness

InAs Channel Scaling:
- Better electrostatic control
 - lower SS
 - larger I_{ON}/I_{OFF} ratio
- Increase of transport m^*
 - reduced v_{inj}, higher N_{inv}
 => higher I_{ON}
- Increase of gate leakage current
 - I_{ON}/I_{OFF} ratio saturates
InAlAs (Insulator) Layer Thickness

InAlAs Insulator Scaling:

- Better electrostatic control (due to larger C_{ox})
- Increase of gate leakage current
 - larger I_{OFF}
 - larger SS
 - smaller I_{ON}/I_{OFF} ratio
Work Function Engineering

Work Function Increase:
- Shift towards enhancement mode
- Decrease of gate leakage current
- Allows for thinner insulator layer
 - steeper SS
 - larger I_{ON}/I_{OFF} ratio

![Graphs showing work function engineering](image)

- $I_d \& I_g$ vs. V_{gs} [V]
 - $V_{ds} = 0.50V$ (solid line), $V_{ds} = 0.05V$ (dotted line)
 - $\Phi_M = 4.7$ eV
 - $\Phi_M = 5.1$ eV

- SS vs. t_{ins} [nm]
 - $\Phi_M = 4.7$ eV
 - $\Phi_M = 5.1$ eV

- I_{ON}/I_{OFF} vs. t_{ins} [nm]
 - $\Phi_M = 5.1$ eV
 - $\Phi_M = 4.7$ eV
Parameters and Performances Summary

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(1) Gate geometry</th>
<th>(2) Channel thickness</th>
<th>(3) Insulator thickness</th>
<th>(4) Metal work function</th>
</tr>
</thead>
</table>

- **Improved gate control**
- **Higher gate leakage**
- **Gate leakage reduction**

InGaAs

- InAs
- InAlAs

Diagrams:

1. **SS vs. InGaAs Channel Thickness**
 - **SS** decreases as channel thickness increases.
 - **L_g = 20 nm**

2. **I_ON/I_OFF vs. InGaAs Channel Thickness**
 - **I_ON/I_OFF** increases as channel thickness increases.
 - **L_g = 20 nm**
Outline

• Motivation
• Modeling Approach
 – Real-space EM simulator including gate leakage
 – Atomistic tight-binding m^*
 – Realistic description of simulation domain (gate geometry)
• Comparison to Experiments $L_g = 30, 40, 50$nm
 – Material parameters, I_d-V_{gs}, I_d-V_{ds}
• Scaling Considerations for $L_g = 20$nm
 – Channel thickness, Insulator thickness, Gate metal work function
• HEMT Simulator on nanoHUB.org
• Conclusion and Outlook
HEMT Simulator on nanoHUB.org

OMEN_FET:
- 2-D Schrödinger-Poisson solver
- Real-space effective mass quantum transport model
- Injection (white arrows) from Source, Drain, and Gate contacts
- HEMTs, Single- and Double-Gate devices
- Electron transport in Si and III-V
- Ballistic transport (no Scattering)
- Current Flow Visualization

http://nanoHUB.org/tools/omenhfet
Run your own simulations!
Conclusion and Outlook

- **Multiscale Modeling Approach**
 - EM transport including gate leakage
 - m^* from tight-binding
- **Good Agreement with Experiments**
- **Scaling Considerations for 20nm Device**
- **HEMT Simulator Deployed on nanoHUB.org**
- **Challenges and Future Directions**
 - S/D contacts, high-k insulator, scattering, interface traps
Thank You!
Transfer Characteristics: I_d-V_{gs} (2)

<table>
<thead>
<tr>
<th>L_g [nm]</th>
<th>SS [mV/dec]</th>
<th>DIBL [mV/V]</th>
<th>I_{ON}/I_{OFF}</th>
<th>V_{inj} [cm/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Expt.</td>
<td>107</td>
<td>169</td>
<td>0.47×10^3</td>
<td></td>
</tr>
<tr>
<td>Sim.</td>
<td>105</td>
<td>145</td>
<td>0.61×10^3</td>
<td>3×10^7</td>
</tr>
<tr>
<td>40 Expt.</td>
<td>91</td>
<td>126</td>
<td>1.38×10^3</td>
<td></td>
</tr>
<tr>
<td>Sim.</td>
<td>89</td>
<td>99</td>
<td>1.86×10^3</td>
<td>3.11×10^7</td>
</tr>
<tr>
<td>50 Expt.</td>
<td>85</td>
<td>97</td>
<td>1.80×10^3</td>
<td></td>
</tr>
<tr>
<td>Sim.</td>
<td>89</td>
<td>91</td>
<td>1.85×10^3</td>
<td>3.18×10^7</td>
</tr>
</tbody>
</table>
Gate Leakage Mechanism

- Electrons tunnel from gate into InAs channel
- Tunneling barriers
 - InAlAs and InGaAs
 - Position dependent barriers
- Current crowding at edges (due to lower tunneling barriers)
- Barriers modulated by Φ_M
Work Function Engineering (2)

Characteristics:

- **Same Gate Overdrive**
 - same thermionic current (source to drain)

- **Gate Fermi levels shifted by $\Delta \Phi_M$**
 - different tunneling barrier height

- **$\Phi_M = 4.7 \text{ eV}$**
 - tunnel through InAlAs only
 - larger I_g

- **$\Phi_M = 5.1 \text{ eV}$**
 - tunnel through InAlAs and InGaAs
 - lower I_g