Time Evolution of Electrical Degradation under High-Voltage Stress in GaN HEMTs

Jungwoo Joh and Jesús A. del Alamo
Microsystems Technology Laboratories, MIT

Acknowledgements: ARL (DARPA WBGS program)
ONR (DRIFT-MURI)
TriQuint Semiconductor
Purpose

• GaN HEMT Reliability: big concern
 – RF power degradation
 – $I_D \downarrow$, $R_D \uparrow$, $I_G \uparrow$, ΔV_T...
• Goal: understand degradation mechanism

RF stress
10 GHz, $V_D=28$ V
$I_DQ=150$ mA/mm
$P_{in}=23$ dBm
$P_{out}=33.7$ dBm
Outline

• Background
• Project goal
• Experimental
 – Procedure
 – Results
• Discussion
• Conclusions
ID, RD, and IG start to degrade beyond critical voltage (V_{crit}) (+ trapping behavior – current collapse) Common physical origin in I_D and I_G degradation

I_D, R_D, and I_G start to degrade beyond critical voltage (V_{crit}) (+ trapping behavior – current collapse)

Common physical origin in I_D and I_G degradation
Structural Degradation

1. $V_{\text{stress}} \approx V_{\text{crit}}$:
 Groove formation in GaN cap

2. $V_{\text{stress}} > V_{\text{crit}}$:
 Pit formation in AlGaN barrier

3. $V_{\text{stress}} \gg V_{\text{crit}}$:
 Pit growth (to AlGaN/GaN interface) and merge + crack formation

Cross-section

Plan-view

Joh, MR 2010

Makaram, APL 2010
Trapping vs. Permanent

13 % permanent degradation + 15 % trapping degradation
Project Goal

- Investigate **time evolution** of degradation and correlate with **structural degradation**
Experimental Procedure

1. **START**
2. **Detrapping**
 - Detrapping step to flush trapped electrons quickly
3. **Full Characterization (DC, CC)**
 - **T_{base} = 30°C**
 - Benign device characterization:
 - Full I_D-V_{DS}, I_D-V_{GS} curves
 - I_D transient measurement: current collapse, detrapping time constant
4. **Electrical Stress**
 - T_{stress}
 - Performed at 30 °C
5. **End?**
 - NO
 - **END: detrapping + Full characterization**
 - YES
 - **YES**
 - Stress conditions:
 - OFF-state: $V_{DS} = 40$ V, $V_{GS} = -7$ V
 - $T_{stress} = 75–200$ °C
Gate Current and V_T

- Very fast I_{Goff} and V_T degradation (<10 ms)
 - E-field driven oxide punch-through? Electrochemical etching?
- Degradation saturates after 10^4 s.
After electrical stress:
Permanent degradation + trapping related degradation

CC = \frac{\text{uncol. } I_{\text{Dlin}} - \text{col. } I_{\text{Dlin}}}{\text{uncollapsed } I_{\text{Dlin}}}

- trapping pulse (1 s \(V_{\text{GS}} = -10 \) V, \(V_{\text{DS}} = 0 \) V)

\(@ t = 0^- \)

stress time = 0-1 s

uncollapsed \(I_{\text{Dlin}} \) (fresh)

permanent degradation

uncollapsed \(I_{\text{Dlin}} \) (stressed)

current collapse:
trapping degradation

collapsed \(I_{\text{Dlin}} \) (stressed)

After 10ks

10/20
• Sharp increase in DP1 ($E_a=0.56$ eV) + long time constant slow traps beyond incubation time.
Drain Current Degradation

Stress: $V_{GS}=-7$ V and $V_{DS}=40$ V
125 °C

For current collapse and permanent I_{Dmax} degradation, incubation time is observed.

$CC = \frac{\text{uncol. } I_{Dlin} - \text{col. } I_{Dlin}}{\text{uncollapsed } I_{Dlin}}$
Temperature Dependence: I_G

- Weak temperature dependence

Stress:
$V_{GS} = -7 \, \text{V}$ and $V_{DS} = 40 \, \text{V}$

Normalized $|I_{Goff}|$ vs. Stress Time (s)

- 125 °C
- 75 °C
- 150 °C
- 100 °C
Temperature Dependence: V_T

- No dependence during initial negative V_T shift
- Positive turn-around seems to occur earlier at high T
Permanent I_{Dmax} Degradation

- Shorter incubation time at high T
- No saturation behavior up to $>10^5$ s

Stress:
$V_{GS}=-7$ V and $V_{DS}=40$ V

Graph showing degradation of I_{Dmax} with stress time at different temperatures ($75^\circ C$, $100^\circ C$, $125^\circ C$, $150^\circ C$).
Current Collapse

- $V_{GS} = -7 \, V$ and $V_{DS} = 40 \, V$

- Shorter incubation time at high T
- More degradation at high T
Temperature Acceleration of Incubation Time

- Different level of temperature acceleration for incubation time.
- E_a for permanent $I_{D_{max}}$ degradation is similar to life test data*.

* Saunier, DRC 2007; Meneghesso, IJMWT 2010
Discussion: Time Evolution of Structural Degradation

$V_{DS}=0$, $V_{GS}=-40$ V, $T_{base}=150$ °C

- Very fast groove formation (10 s) on gate edge.
 → Related to gate current degradation
- Pit density/size gradually increase with time.
Electrical vs. Structural Degradation

Similar time dependence in current collapse and pit formation.
Conclusion

• Investigated time evolution of electrical degradation in GaN HEMTs
 • Fast I_G degradation ~ 10-100 ms
 – Weak temperature dependence
 – Oxide punch through / groove formation?
 • Current collapse degradation ~ 10-100 s
 – Related to pit formation
 • Permanent I_D degradation >100 s
 – Strong thermal activation ($E_a = 1.1$ eV)