III-V CMOS: the key to sub-10 nm electronics?

J. A. del Alamo
Microsystems Technology Laboratories, MIT

2011 MRS Spring Meeting and Exhibition
Symposium P: Interface Engineering for Post-CMOS Emerging Channel Materials
April 25-29, 2011

Acknowledgements:
• Sponsors: Intel, FCRP-MSD
• Collaborators: Dae-Hyun Kim, Donghyun Jin, Tae-Woo Kim, Niamh Waldron, Ling Xia, Dimitri Antoniadis, Robert Chau
• Labs at MIT: MTL, NSL, SEBL
Outline

• Why III-Vs for CMOS?

• Lessons from III-V HEMTs

• The challenges for III-V CMOS
 – Critical problems

• How will a future 10 nm class III-V FET look like?

• Conclusions
CMOS scaling in the 21st century

• Si CMOS has entered era of "power-constrained scaling":
 – Microprocessor power density saturated at ~100 W/cm²
 – Microprocessor clock speed saturated at ~ 4 GHz

[Graph showing CPU power density and clock rate over years, labeled Pop, Nano Res 2010]
Consequences of Power Constrained Scaling

Power = active power + stand-by power

\[P_A \sim f CV_{DD}^2N \rightarrow N \uparrow \rightarrow V_{DD} \downarrow \]

→ Transistor scaling requires reduction in supply voltage
→ Not possible with Si: performance degrades too much
How III-Vs allow further V_{DD} reduction?

- **Goals of scaling:**
 - reduce transistor footprint
 - extract maximum I_{ON} for given I_{OFF}
How III-Vs allow further V_{DD} reduction?

- **Goals of scaling:**
 - reduce transistor footprint
 - extract maximum I_{ON} for given I_{OFF}

- **III-Vs:**
 - higher electron velocity than Si $\rightarrow I_{ON}$ ↑
 - tight carrier confinement in quantum well $\rightarrow S \downarrow \rightarrow$ sharp turn on
InAs High Electron Mobility Transistors

- QW channel ($t_{ch} = 10$ nm):
 - InAs core ($t_{InAs} = 5$ nm)
 - InGaAs cladding
- $\mu_{n,Hall} = 13,200$ cm2/V-sec
- InAlAs barrier ($t_{ins} = 4$ nm)
- Ti/Pt/Au Schottky gate
- $L_g = 30$ nm

Kim, EDL 2010
$L_g=30 \text{ nm InAs HEMT}$

- Large current drive: $I_{ON}>0.5 \text{ mA/µm at } V_{DD}=0.5 \text{ V}$
- $V_T = -0.15 \text{ V, } R_S=190 \text{ ohm.µm}$
- High transconductance: $g_{mpk} = 1.9 \text{ mS/µm at } V_{DD}=0.5 \text{ V}$

Kim, EDL 2010
FET with highest f_T in any material system
- Only transistor of any kind with both f_T and $f_{max} > 640$ GHz
- $S = 74 \text{ mV/dec}$, DIBL = 80 mV/V, $I_{on}/I_{off} \sim 5 \times 10^3$
- All FOMs at $V_{DD}=0.5 \text{ V}$
InAs HEMTs: Benchmarking with Si

- FOM that integrates short-channel effects and transport:
 \[I_{ON} @ I_{OFF}=100 \text{ nA/\(\mu\)m}, \ V_{DD}=0.5 \ V \]

Diagram:
- Logarithmic plot of drain current \(I_D \) against gate voltage \(V_{GS} \).
- Comparison with silicon CMOS technology, showing higher \(I_{ON} \) for the same \(I_{OFF} \) in InAs HEMTs.

Text:
- InAs HEMTs: higher \(I_{ON} \) for same \(I_{OFF} \) than Si
Why high I_{ON}?

1. Very high electron injection velocity at the virtual source

- v_{inj}(InGaAs) increases with InAs fraction in channel
- v_{inj}(InGaAs) > 2v_{inj}(Si) at less than half V_{DD}

Kim, IEDM 2009
Liu, Springer 2010
Why high I_{ON}?

2. Sharp subthreshold swing due to quantum-well channel

- Dramatic improvement in short-channel effects in thin channel devices
The Challenges for III-V CMOS: III-V HEMT vs. Si CMOS

Critical issues:
- Schottky gate \rightarrow MOS gate
- Footprint scaling [1000x too big!]
 \rightarrow Need self-aligned design
- p-channel device
- III-V on Si
III-V’s on Si

• The challenge:
 – III-V heterostructures on large-area Si wafers
 – Thin buffer layer
 – Low defectivity

• Some notable work:

 Direct III-V MBE on Si
 (Intel)
 Hudait, IEDM 2007

 Aspect Ratio Trapping +
 Epitaxial Lateral Overgrowth
 (Amberwave)
 Fiorenza, ECS 2010

 InAs Nanoribbon
 MOSFETs on Insulator
 (UC Berkeley)
 Ko, Nature 2010
Critical problem:
Integration of two different layer structures side-by-side on Si

Key issues:
- different lattice constants
- planar surface
- compact
The gate stack

• Challenge: metal/high-K oxide gate stack
 – Fabricated through \textit{ex-situ} process
 – Very thin oxide (EOT<1 nm)
 – Low leakage ($I_G<10$ A/cm2)
 – Low D_{it} ($<10^{12}$ eV$^{-1}$.cm$^{-2}$ in top ~0.3 eV of bandgap)
 – Reliable

• Some notable work:
 - Al$_2$O$_3$ by ALD (Purdue)
 - Al$_2$O$_3$ /GGO on InGaAs by MBE/ALD (Tsinghua)
 - TaSiO$_x$ on InGaAs by ALD (Intel)
 - Al$_2$O$_3$ by ALD (Purdue)
 - Radosavljevic, IEDM 2009

Hong, MRS Bull 2009
Wu, EDL 2009
In$_{0.7}$Ga$_{0.3}$As Quantum-Well MOSFET

$L_g=75$ nm InGaAs MOSFET outperforms state-or-the-art Si NMOS at 0.5 V

Radosavljevic, IEDM 2009
Critical problem: Mobility degradation in scaled gate stacks

- μ advantage over Si erodes away in thin barrier structures
- Remote Coulomb scattering at oxide/semiconductor interface

Graph courtesy of Prashant Majhi (Sematech)
Self-aligned device architecture

- The challenge:
 - MOSFET structures with scalability to 10 nm
 - Self-aligned gate design
- Some notable work:
 - Ion-implanted self-aligned InGaAs MOSFET (NUS) by Lin, IEDM 2008
 - Regrown ohmic contact MOSFET (NUS) by Chin, EDL 2009
 - Quantum-well FET with self-aligned Mo contacts (MIT) by Kim, IEDM 2010
Critical problem: contact scaling

Current contacts to III-V FETs are >100X off in required contact resistance

Today: ~200 ohm.μm
Need: ~50 ohm.μm

Reduce contact resistivity + resistance of contact stack

Waldron, TED 2010
P-channel MOSFETs

• The challenge:
 – Performance >1/3 that of n-MOSFETs
 – Capable of scaling to <10 nm gate length regime
 – Co-integration with III-V NMOSFET on Si

• Some notable work:

Ga$_2$O$_3$/AlGaAs/GaAs MOSFET (Motorola)
Passlack, EDL 2002

Al$_2$O$_3$/InGaSb QW-MOSFET (Stanford)
Nainani, IEDM 2010

Al$_2$O$_3$ by ALD on InGaAs and Ge MOSFETs (IMEC)
Lin, IEDM 2009
How will a future 10 nm-class III-V MOSFET look like?

• Quantum well + raised source/drain + self-aligned gate
• Two designs:

 \[\begin{align*}
 \text{Recessed gate} & \quad \text{self-aligned source and drain by recess etching} \\
 \text{Regrown source and drain} & \quad \text{self-aligned regrown source and drain}
 \end{align*} \]

• QW extends under S/D → high \(\mu \) preserved
• Critical interface protected until late in process
• More freedom for S/D region design
• Uniaxial strain possible
Critical problem: planar FET might not meet electrostatics requirements

- Electrostatic integrity might demand 3D III-V MOSFET structures
- Some notable work:

 - InAs Nanowire FETs (UC Berkeley)
 Chueh, NanoLett 2008
 - InAs Vertical Nanowire FETs (Lund)
 Egard, NanoLett 2010
 - InGaAs FinFET (Purdue, Intel)
 Wu, IEDM 2009
 Radosavljevic, IEDM 2010
Conclusions

• III-Vs attractive for CMOS: key for low V_{DD} operation
 – Electron injection velocity > 2X that of Si at 1/2X V_{DD}
 – Quantum-well channel yields outstanding short-channel effects

• Impressive recent progress on III-V CMOS
 – Ex-situ ALD and MOCVD on InGaAs yield interfaces with unpinned Fermi level and low defect density
 – Sub-100 nm InGaAs MOSFETs with $I_{ON} >$ than Si at 0.5 V demonstrated

• Lots of work ahead
 – Demonstrate 10 nm III-V N-MOSFET that is better than Si
 – P-channel MOSFET
 – N-channel + P-channel cointegration