Impact of Gate Placement on RF Degradation in GaN HEMTs

Jungwoo Joh and Jesús A. del Alamo
Microsystems Technology Laboratory, MIT

Acknowledgements: ARL (DARPA WBGS program)
ONR (DRIFT-MURI)
Accel-RF Corporation
Motivation

• RF reliability – main concern in GaN HEMT RF power amplifier
• Compared to DC stress, little known about degradation mechanisms under RF stress
 – $P_{\text{out}} \downarrow$, Gain \downarrow
 – $I_D \downarrow$, dispersion \uparrow, $g_m \downarrow$, $|I_G| \uparrow$
 – RF introduces more degradation than DC
 [Conway, IRPS 2007; Joh, ROCS 2008; Chini, IEDM 2009; Joh, IEDM 2010]

• Goal:
 – Develop methodology for RF reliability studies
 – Identify dominant RF degradation mechanisms
 – Correlate RF and DC reliability
Experimental Setup

Accel-RF AARTS RF10000-4/S system:
- two 2-4 GHz channels
- two 7-12 GHz channels
- Max $P_{in} = 30$ dBm
- $T_{base} = 50-200 \, ^\circ C$

Accel-RF system augmented with:
- external instrumentation for DC/pulsed characterization
- software to control external instrumentation and extract DC and RF FOMs
RF Experiment Flowchart: Conventional Approach

Limitations:
- Bias point shifts during stress
- Limited RF characterization
- No DC characterization
- No trap characterization
- If examining different RF conditions, RF characterization confusing

START

RF Stress

T_{stress}

P_{out}, PAE, Gain, I_{DQ}, I_{GQ}

END
RF Experiment Flowchart: Improved Approach

- **Short characterization:**
 - Every few minutes at $T_{\text{base}}=50 \, ^\circ\text{C}$
 - DC FOMs: $I_{\text{Dmax}}, R_S, R_D, V_T, I_{\text{Goff}}, \ldots$
 - RF FOMs @ $V_{\text{DS}}=28 \, \text{V} \& I_{\text{DQ}}=100 \, \text{mA/mm}$
 - Saturated conditions ($P_{\text{in}}=23 \, \text{dBm}$): $P_{\text{out,sat}}, G_{\text{sat}}, \text{PAE}$
 - Linear conditions ($P_{\text{in}}=10 \, \text{dBm}$): G_{lin}

- **Full Characterization:**
 - After key events at room temperature
 - Full DC I-V sweep
 - Current collapse (after 1" $V_{\text{DS}}=0, V_{\text{GS}}=-10 \, \text{V}$ pulse)
 - Full RF power sweep @ $V_{\text{DS}}=28 \, \text{V}$, $I_{\text{DQ}}=100 \, \text{mA/mm}$

- **Detrapping:** $T_{\text{base}}=100 \, ^\circ\text{C}$ for 30 mins
P_{in} Step-Stress: Centered Gate

- **Motivation:**
 - higher P_{in} \rightarrow larger V waveform at output

- **MMIC:**
 - single-stage internally-matched
 - 4x100 μm GaN HEMT
 - Gate placed at the center btw S & D

- **Step P_{in} stress:**
 - $V_{DS} = 40$ V, $I_{DQ} = 100$ mA/mm
 - $P_{\text{in}} = 0$ (DC), 1, 20-27 dBm
 - 300 min stress at each step
 - $T_{\text{stress}} = 50$ °C
Characterization during RF Stress

- RF FOMs changing because P_{in} changing
- Degradation apparent but not easily quantifiable
DC FOM during Short Characterization

- Little degradation under DC and low P_{in}
- Beyond $P_{in}=20$ dBm:
 - RF induces degradation of I_{Dmax} and R_D
 - Sharp degradation in I_{Goff}
• Similar critical behavior. Beyond $P_{\text{in}}=20$ dBm:
 — Sharp P_{out} degradation
 — permanent degradation of I_{Dmax}
 — Evidence of new traps created (increased CC)
Structural Degradation (Planar View)

- Pit formation along the drain side of gate edge
- Same degradation mechanism as in DC high field OFF-state
Correlation between DC and RF FOM

- **Good correlation** between P_{out} and I_{Dmax} degradation

 $\Delta P_{\text{out}} = 1 \text{ dB} \iff \Delta I_{\text{Dmax}} = 9\%$

Short characterization @ 50 °C
Step P_{in} Stress: Offset Gate

- More degradation under RF stress @ high P_{in}
- No I_{Goff} degradation ($\text{high } V_{crit}$)
- Degradation in I_{Dmax} and R_S, not in R_D
- No structural degradation

Joh, IEDM 2010
Pulsed Stress: High-power State

- High-power stress not accessible in DC \rightarrow pulsed stress
- Pulsed stress reproduces large R_S degradation in offset gate
- No R_S degradation in centered gate

100 pulses, 500 us, 0.05% duty
$I_{Dpulse} = 950$ mA/mm
Summary

• Developed new RF reliability testing methodology

• Critical behavior in RF stress on centered gate:
 – $P_{\text{in}} \uparrow \rightarrow P_{\text{out}} \downarrow$ (>> DC stress)
 – $I_{\text{Dmax}} \downarrow$, current collapse \uparrow, $I_{\text{Goff}} \uparrow$
 – Good correlation between DC and RF FOMs
 – Structural degradation on drain-side gate edge
 – Same degradation mechanism under high-voltage OFF-state DC stress

• Offset gate:
 – Different degradation mechanism is present
 – Significant R_S degradation