Mobility Enhancement of 2DHG in an In$_{0.24}$Ga$_{0.76}$As Quantum Well by $<110>$ Uniaxial Strain

Ling Xia1, Vadim Tokranov2, Serge Oktyabrsky2
and Jesús del Alamo1

1MIT, 2SUNY Albany

05.25.2011
Motivation

- Improve p-channel InGaAs FETs for III-V CMOS
- Enhance μ: biaxial strain + uniaxial strain

Demonstrated:
High-performance InGaAs nFET

Wanted:
High-performance InGaAs pFET

$\pi = -\frac{1}{\mu_0} \frac{\partial \mu}{\partial \sigma}$

$\pi_{L_{<110}}$ (with $\sigma_{bi}) > \pi_{L_{<110}}$ (without σ_{bi})

Jesus del Alamo, IEDM 2007, short course
Leonardo Gomez, EDL, 2010
Experimental structure

- Biaxially strained p-channel In$_{0.24}$Ga$_{0.76}$As QW:
 - Channel strain: 1.7% biaxial compressive

- Typical output characteristics of fabricated QW-FET:

```
ΔV_{GS} = 0.2 V  \quad V_{GS} = -0.4 V  
L_g = 2 \mu m
```

![Diagram showing the structure and output characteristics of the QW-FET.](image)
Experiment approach

• Apply uniaxial stress to GaAs chips
• Measure response of ungated Hall bars
 – High I_G prevents accurate C-V to extract C_G and p_s

• Mechanism to bend GaAs chips
• Can apply tensile or compressive stress
• Supporting mechanism and connections
• Stress and Hall bar orientations
Sheet hole density change

Compressive \leftrightarrow Tensile

$\Delta p_s/p_{s0}$ (%) vs Stress (MPa)

- $\sigma_{\perp}[110]$
 - Rate: 0.043% per MPa
- $\sigma_{\parallel}[-110]$
 - Rate: 0.018% per MPa
- Channel along [-110]

$\Delta p_s/p_{s0}$ (%) vs Stress (MPa)

- $\sigma_{\parallel}[110]$
 - Rate: -0.036% per MPa
- $\sigma_{\perp}[-110]$
 - Rate: 0.010% per MPa
- Channel along [110]

Solid lines: linear fittings to data
Dashed lines: 1D SP simulation with piezoelectric effect

- Almost identical patterns in Δp_s for Hall bars along [110] and [-110]
 - Δp_s determined by piezoelectric effect
 - Similar to our previous p-channel GaAs study. (L. Xia, to be published on TED)
Hole mobility change

- General trends of μ_h:
 - Dominant factor: relative orientation of stress and transport direction
 - Similar in Si and Ge
Sensitivities of μ_h to $\sigma_{<110>}$

- Preferred configuration: Compressive σ parallel to [-110] channel
- Questions:
 - Why $\pi_{//}$ different from π_{\perp}?
 - Why $|\pi_{//,[-110]}| \neq |\pi_{//,[110]}|$, and $|\pi_{\perp,[-110]}| \neq |\pi_{\perp,[110]}|$?
Anisotropy between $\pi_{//}$ and π_{\perp}

- Dominated by in-plane VB dispersion anisotropy
 - Simulation: 2D in-plane dispersion relation in QW by $k.p$ method

No uniaxial stress

With uniaxial [-110] compressive stress

- Change of VB $(m^*)_{//}$ or \perp to σ are different $\rightarrow \pi_{//}$ and π_{\perp} different
 - Sign – opposite for $\Delta m^*_{//}$ and Δm^*_{\perp}
 - Magnitude – different (will show quantitatively later)
 - Similar in Si or Ge (S. Thompson, IEDM, 2004; O. Weber, IEDM, 2007)
Different π along the two $<110>$ directions

• Counterintuitive:
 – $\Delta m^*_{//}$ (or Δm^*_{\perp}) should be the same for $\sigma_{[-110]}$ and $\sigma_{[110]}$

• 1st effect: p_s change due to piezoelectric effect ($p_s \uparrow \rightarrow \mu_h \downarrow$)
 – Partly explains $\pi_{\perp,-110}$ and $\pi_{\perp,110}$ difference
 – May have decreased $\pi_{//,-110}$ and increased $\pi_{//,110}$

• 2nd effect: polarization-field-induced quantization change

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al${0.42}$Ga${0.58}$As</td>
<td>21 nm</td>
</tr>
<tr>
<td>In${0.24}$Ga${0.76}$As</td>
<td>9 nm</td>
</tr>
<tr>
<td>Al${0.33}$Ga${0.67}$As</td>
<td>80 nm</td>
</tr>
<tr>
<td>GaAs buffer</td>
<td>70 nm</td>
</tr>
<tr>
<td>S.I. GaAs Substrate</td>
<td></td>
</tr>
</tbody>
</table>

Black: [110] -112 MPa
Red: [-110] -112 MPa

ϕ^2(a.u.) vs. z along growth axis (nm)
Comparison between experiments and simulations

- Extract average conductivity m^* by approximations:
 $m_i^*(E) = \frac{\hbar^2 k^2}{2(E - E_v)}$
 $m^* = \frac{\sum_i \int_{E_{mi}}^\infty m_i^*(E)f(E)g_i(E)dE}{\sum_i \int_{E_{mi}}^\infty f(E)g_i(E)dE}$

- Other sources of anisotropy:
 - Anisotropic scattering (e.g. polar optical phonon scattering) $\tau_\parallel \neq \tau_\perp$ when $m^*_\parallel \neq m^*_\perp$ (J. J. Harris, J. Phys. Chem. Solids, 1973)
Comparison with other materials

- Uniaxial strain is a viable path to enhance p-channel III-V FET performance
- Superposition of uniaxial strain on top of biaxial strain → large improvement in μ

$|\pi| = \left| \frac{1}{\mu_0} \frac{\partial \mu}{\partial \sigma} \right|$

Measured from 2DHG or inversion layers

$p_s = 6-8 \times 10^{11} \text{ cm}^{-2}$
For Ge, $p_s = 2 \times 10^{12} \text{ cm}^{-2}$

[2] L. Xia, to be published on TED