Strain and Temperature Dependence of Defect Formation at AlGaN/GaN High Electron Mobility Transistors on a Nanometer Scale

Chung-Han Lin
Department of Electrical & Computer Engineering, The Ohio State University

Tyler A. Merz and Daniel R. Doutt
Department of Physics, The Ohio State University

Jungwoo Joh and Jesus del Alamo
Microsystems Technology Laboratory, Massachusetts Institute of Technology

Umesh K. Mishra
Electrical & Computer Engineering, University of California, Santa Barbara

Leonard J. Brillson
Departments of Electrical & Computer Engineering and Physics

Outline

Background: AlGaN/GaN HEMT physical degradation mechanisms – Historical efforts

- Techniques: DRCLS, KPFM, I_D & I_{GOFF} vs. V_{DS}

- **Device Conditions**: ON-state vs. OFF-state stress

- Electric field vs. Thermal stress: Surface potential, leakage current, defect generation → Failure prediction

Conclusions: (1) Dominant impact of V_{DS} vs. I_{DS} on device reliability

(2) Primary defects located *inside* AlGaN
Motivation

- AlGaN/GaN HEMT: high power, RF, and high speed applications
- Reliability challenge: Hard to predict failure
- High current, piezoelectric material, & high field due to high bias → Defect generation
- Micro-CL, AFM, and KPFM: Follow evolution of potential, defects, and failure
Background: All-Optical Methods

Raman/IR Technique

PL Technique

Background: Scanned Probe Methods

SThM Technique

DRCLS Technique

$T = 218.7 + 112.3 \times V$

E_G versus T

$V_{DS} = 18.2 \, V$, $I_{DS} = 194 \, mA$, $V_{GS} = -2 \, V$

T versus Gate-Drain Location
Depth and Laterally-Resolved CLS

Image of JEOL JAMP 7800F: SEM, Micro-CL

T, σ, defects, atomic composition

- Source
- Gate
- Drain
- AlGaN
- 2DEG
- GaN
- Buffer layer
- Substrate

5 kV, 10 nm beam

![Graph showing intensity vs. depth for different energies](image)

- 1 keV
- 2 keV
- 3 keV
- 4 keV
- 5 keV

Intensity (a.u.)

Depth (nm)

Grading AlGaN

(25%)

(10%)

50 nm

10 nm
Background: Temperature Maps

- Hottest spot at drain-side gate edge
- Hot spots also inside GaN buffer

Electroluminescence detects gap states forming inside HEMT during operation.

Electrochemically-Produced Defects

- High C, O, and Si concentrations at gate foot “lattice disruption” area
- Gate leakage current promotes electrochemical reaction

Impact of Structural Defects

High field at drain-side gate can form structural defects that affect I_{G-OFF} & I_D
Inverse Piezoelectric Effect and Defects

\[V_{DS} + V_{\text{piezo}}^{\text{inv}} \rightarrow \text{strain energy} \]
\[\rightarrow \text{exceed elastic energy of crystal} \]
\[\rightarrow \text{form defects at gate foot} \]

Measurement Strategy

- **Thermal Mapping**: DRCLS NBE laterally (<10 nm) & in depth (nm’s to µm’s)
 - Obtain T vs. I_{DS}; locate “hot” spots
- **Stress Mapping**: DRCLS NBE near gate foot vs. V_{DS} with I_{DS} OFF (no heating)
- **Potential Mapping**: Kelvin work function vs. V_{DS} with I_{DS} OFF (no heating)
- **Device testing**: Step-wise ON & OFF-state $I_{D\text{MAX}}$ and $I_{G\text{OFF}}$ vs. V_{DS}
- **Defect Generation**: CLS defect peak intensities vs. thermal and electrical stress
- **Defect Localization**: DRCLS intensities vs. depth
Stress Conditions

- **Reference:** No stress

- **ON-state stress:** high I_D, low V_{DS}

 \[
 (I_D = 0.75 \text{ A/mm}, \ V_{DS} = 6 \text{ V}, \ V_G = 0 \text{ V})
 \]

- **OFF-state stress:** low I_D, high V_{DS}

 \[
 (I_D = 5 \times 10^{-6} \text{ A/mm}, \ V_{DS} = 10 \sim 30 \text{ V}, \ V_G = -6 \text{ V})
 \]

- I_{GOFF} taken at $V_{DS} = 0.5 \text{ V}, \ V_{GS} = -6 \text{ V}$

Aim: Test electric field-induced strain vs. current-induced (e.g., heating) mechanism
Strain Measurements: Drain-side Gate Foot

- Applied voltage blue-shifts band gap, increases mechanical strain at drain-side gate foot
- 26 meV CL shift = 1 GPa; $V_{DG} = 32$ V $\rightarrow 0.27$ GPa

I_{DMAX}, I_{G-OFF} vs. Time & Applied Voltage

OFF-state
- **OFF-state** I_{G-Off} rises sharply at threshold V_{DG}

ON-state
- **ON-state** I_{G-OFF} decreases vs. time
 - → device degradation with external stress
Surface Potential Evolution (OFF-state)

Low potential regions appear and expand with increasing applied stress V_{DG}

Surface Potential Evolution (ON-state)

Current stress seems to degrade device in a different way
Device Failure under OFF-state Stress

- Device failure occurs as V_{DG} increases further
- Large, cratered failure area appears; morphology of drain metal exhibits huge change
Correlation between AFM, KPFM & SEM

AFM, KPFM and SEM results reveal that device fails at the lowest surface potential area, where defect density is highest.
Within low potential region and at depth of 2DEG, DRCLS reveals formation of deep level defects.

Defect Generation vs. Location

Largest defect increase at lowest potential region

Areas of highest defect intensities and highest stress correlate

Lower defect creation for On-state stress

Largest defect increase at lowest potential region

Increasing defects densities correlate with decreasing potential.
Surface Potential vs. Electrical Stress

\[\sigma^* = \sigma_0/[1+\exp[(E_F - E_a)/kT]] \]

\[q\Delta V = q^2 \sigma_a d/\varepsilon \]

• \(E_F \) moves lower in gap as acceptor-like defects increase
• Drain-side surface potential decreases (\(\Phi \) increases) with increasing \(V_{DG} \)
• Above \(V_{DG} \) threshold, faster decreases at low \(\Phi \) patches
• Higher \(\Phi \) patches decrease slower
CLS Energy Comparison with Trap Spectroscopy

- **DLOS**: 3 traps observed: $E_C-0.55$ (dominant), 1.1, &1.7-1.9 eV

- **DRCLS**: 2.8 eV BB and 2.3 eV YB emissions: Traps that grow under DC stress – high 10^{12} cm^{-2} densities

\[
\begin{align*}
\text{GaN} &: E_C - 0.55 \text{ eV}, \ 1.1 \text{ eV}, \ 1.7-1.9 \text{ eV} \\
\text{AlGaN} &: E_C - 0.55 \text{ eV}, \ 1.35 \text{ eV} \\
&: E_V - 3.6 \text{ eV}, \ 2.8 \text{ eV}
\end{align*}
\]

AlGaN/GaN HEMT Defect Location

Pre-stress

- Source
 - AlGaN: $E_g = 4.2$ eV
 - $E_v + 2.2$ eV
 - $E_v + 1.6$ eV
 - $E_C - 2.0$ eV
 - $E_C - 3.4$ eV

- Drain
 - AlGaN: $E_g = 4.2$ eV
 - $E_v + 2.2$ eV
 - $E_v + 1.6$ eV
 - $E_C - 2.0$ eV
 - $E_C - 3.4$ eV

Post-stress

- Source
 - Before stress
 - E_c range: 4.1 \sim 4.2 eV
 - E_v range: 4.1 \sim 4.2 eV
 - E_C range: 3.4 \sim 2.0 eV
 - YB

- Drain
 - After stress – source side
 - E_c range: 4.1 \sim 4.2 eV
 - E_v range: 4.1 \sim 4.2 eV
 - E_C range: 3.4 \sim 2.0 eV
 - YB

- After stress – drain side
 - E_c range: 4.1 \sim 4.2 eV
 - E_v range: 4.1 \sim 4.2 eV
 - E_C range: 3.4 \sim 2.0 eV
 - YB

- BB

Key Observations

- **New 3.6 eV feature** 0.5-0.6 eV below E_C → **BB defect within AlGaN**
- **Larger 2.2 eV threshold feature** → **higher YB defects with stress**
- **Higher Drain-side vs. Source-side changes**: consistent with DRCLS
AlGaN/GaN HEMT Physical Degradation Mechanisms

Strain- and Field-induced Impurity Diffusion

Inverse Piezoelectric Effect

Electronically-Active Defect Formation

Multiple possible mechanisms that all create electronically-active defects
BB peak shifts with AlGaN \rightarrow BB defect in AlGaN

Shifted AlGaN NBE and BB features appear only when excitation reaches 40 nm Al_{0.22}Ga_{0.78}N layer \rightarrow Additional piezoelectric strain field
Conclusions

- DRCLS measures electric field-induced stress and current-induced heating on a nanoscale *during* OFF-state and ON-state operation.
- KPFM maps reveal expanding low potential patches where defects form and device failure will occur.
- Separation of field- vs. current-induced degradation demonstrates their relative impact on AlGaN/GaN reliability.
- Nanoscale patch potential and defect evolution inside AlGaN vs. V_{DG} threshold effect at drain-side gate foot support inverse piezoelectric degradation model.