Temperature-accelerated Degradation of GaN HEMTs under High-power Stress: Activation Energy of Drain Current Degradation

Yufei Wu, Chia-Yu Chen and Jesús A. del Alamo

Microsystems Technology Laboratory

Acknowledgement: DRIFT-MURI, TriQuint Semiconductor
Outline

1. Motivation
2. High-power and high-temperature stress experiments
3. An improved approach
4. Conclusions
Motivation

- Activation energy, E_a: essential in predicting lifetime
- Conventionally: high temperature accelerated life test

N. Malbert, IRPS 2010
Motivation

- Activation energy, E_a: essential in predicting lifetime
- Conventionally: high temperature accelerated life test

Problems:
- Requires multiple devices
- Carrier trapping not properly dealt with
- Different degradation mechanisms can emerge at different temperatures

N. Malbert, IRPS 2010
Motivation

• Activation energy, E_a:
 essential in predicting lifetime
• Conventionally:
 high temperature accelerated life test

Desirable: E_a extraction from measurements on a *single device*

Step-temperature stress

N. Malbert, IRPS 2010
Outline

1. Motivation
2. High-power and high-temperature stress experiments
3. An improved approach
4. Conclusions
Setup for DC reliability studies

Devices: Prototype GaN Power Amplifier MMIC from industry

Accel-RF AARTS RF10000-4/S system

Augmented with:
- external instrumentation for DC/pulsed characterization
- software to control external instrumentation and extract DC FOMs
High-power DC Experiment Flowchart

- **Detrapping**: $T_{\text{base}} = 250 \, ^\circ\text{C}$ for 7.5 hours
- **Full characterization**
 - At $T_{\text{base}} = 50 \, ^\circ\text{C}$
 - Full DC I-V sweep
 - Current collapse

Start → Detrapping → Full Characterization → DC and Temperature Stress → Short Characterization (DC) → End: detrapping + full characterization
High-power DC Experiment Flowchart

- **Detrapping**: $T_{\text{base}} = 250 \, ^\circ\text{C}$ for 7.5 hours
- **Full characterization**
 - At $T_{\text{base}} = 50 \, ^\circ\text{C}$
 - Full DC I-V sweep
 - Current collapse
- **Stress:**
 - High-power condition
 - Base temperature stepped up
- **Short characterization**
 - Every 30 minutes at $T_{\text{base}} = 50 \, ^\circ\text{C}$
 - DC FOMs: $I_{\text{Dmax}}, I_{\text{Goff}}, R_D, R_S, V_T,$...
High-power DC Experiment Flowchart

- **Detrapping**: $T_{\text{base}} = 250 \, ^\circ\text{C}$ for 7.5 hours
- **Full characterization**
 - At $T_{\text{base}} = 50 \, ^\circ\text{C}$
 - Full DC I-V sweep
 - Current collapse
- **Stress**:
 - High-power condition
 - Base temperature stepped up
- **Short characterization**
 - Every 30 minutes at $T_{\text{base}} = 50 \, ^\circ\text{C}$
 - DC FOMs: I_{Dmax}, I_{Goff}, R_D, R_S, V_T, ...

Start

Detrapping

Full Characterization

DC and Temperature Stress

Short Characterization (DC)

End: detrapping + full characterization
Definitions of Various Figures of Merit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{D\text{max}}$</td>
<td>I_D at $V_{GS}=2$ V, $V_{DS}=5$ V</td>
</tr>
<tr>
<td>$I_{G\text{off}}$</td>
<td>I_G at $V_{GS}=-5$ V, $V_{DS}=0.1$ V</td>
</tr>
<tr>
<td>R_D</td>
<td>Drain resistance measured with $I_G = 20$ mA/mm</td>
</tr>
<tr>
<td>R_S</td>
<td>Source resistance measured with $I_G = 20$ mA/mm</td>
</tr>
<tr>
<td>V_T</td>
<td>$V_{GS} - 0.5V_{DS}$ when $I_D = 1$ mA/mm at $V_{DS} = 0.1$ V</td>
</tr>
<tr>
<td>Current Collapse</td>
<td>Percentage change in $I_{D\text{max}}$ after 1 sec. $V_{DS} = 0$ V,</td>
</tr>
<tr>
<td></td>
<td>$V_{GS} = -10$ V pulse</td>
</tr>
</tbody>
</table>
High-power DC Experiment

High-power stress: $V_{DS} = 40$ V, $I_D = 100$ mA/mm, $T_{base} = 50^\circ C – 230^\circ C$, 600 min/step

- outer loop data

![Graph showing I_{Goff} vs. time with temperatures: 50, 120, 140, 160, 180, 190, 200, 210, 220°C.]

- outer loop data

![Graph showing $I_{Dmax}/I_{Dmax}(0)$ vs. time with temperatures: 50, 120, 140, 160, 180, 190, 200, 210, 220°C.]

$T_{base}(^\circ C) = 220$
High-power DC Experiment

High-power stress: \(V_{DS} = 40 \, V, \, I_D = 100 \, mA/mm, \, T_{base} = 50 \, ^\circ C – 230 \, ^\circ C, \, 600 \, min/step \)

- \(|I_{Goff}| \) increases from \(T_{base} = 170 \) to \(190 \, ^\circ C \); then saturates
- Significant \(I_{Dmax} \) degradation for \(T_{base} > 180 \, ^\circ C \)
- Thermally activated \(I_{Dmax} \) degradation rate shown
High-power DC Experiment

High-power stress: \(V_{DS} = 40\) V, \(I_D = 100\) mA/mm, \(T_{base} = 50\) °C – 230 °C, 600 min/step

- \(R_D\) increases significantly, consistent with \(I_{D\text{max}}\) decrease
- \(R_S\) increases much less
Activation Energies of Degradation Rates

Inner loop data

- R_b: $E_a = 1.00$ eV
- $I_{D_{max}}$: $E_a = 0.58$ eV

Outer loop data (device detrapped)

- R_b: $E_a = 0.91$ eV
- $I_{D_{max}}$: $E_a = 0.94$ eV

T_{channel} obtained from thermal model of MMICs
Activation Energies of Degradation Rates

- Inner loop data:
 - \(I_{D_{\text{max}}} : E_a = 0.58 \text{ eV} \)
 - \(R_D : E_a = 1.00 \text{ eV} \)

- Outer loop data (device detrapped):
 - \(I_{D_{\text{max}}} : E_a = 0.94 \text{ eV} \)
 - \(R_D : E_a = 0.91 \text{ eV} \)

\[\ln\left(\frac{1}{|\text{slope}|}\right) = \frac{1}{kT_{\text{channel}}} (\text{eV}^{-1}) \]

\(T_{\text{channel}} \) obtained from thermal model of MMICs

- Inner loop data:
 Large difference between \(E_a \) for \(I_{D_{\text{max}}} \) and \(R_D \)
Activation Energies of Degradation Rates

- Inner loop data:

 Large difference between E_a for $I_{D_{max}}$ and R_D

- Outer loop data:

 Thermally activated behavior

$T_{channel}$ obtained from thermal model of MMICs
Activation Energies of Degradation Rates

- **Inner loop data:**

 Large difference between E_a for $I_{D_{\text{max}}}$ and R_D

- **Outer loop data:**

 Close E_a values for $I_{D_{\text{max}}}$ and R_D \Rightarrow common physical origin

- R_D: $E_a = 1.00$ eV
- $I_{D_{\text{max}}}$: $E_a = 0.58$ eV
- R_D: $E_a = 0.91$ eV
- $I_{D_{\text{max}}}$: $E_a = 0.94$ eV

T_{channel} obtained from thermal model of MMICs
Conclusions Drawn from the Experiment

• I_G degradation:
 - Increases fast at first
 - Eventually saturates

• I_D degradation:
 - Significant degradation only after I_G degradation is saturated
 - Thermally activated

\[T_{\text{base}} (\degree C) = 220 \]
Conclusions Drawn from the Experiment

- I_G degradation:
 - Increases fast at first
 - Eventually saturates

- I_D degradation:
 - Significant degradation only after I_G degradation is saturated
 - Thermally activated

- Desirable: separate I_G and I_D degradation
- Key idea: short stress to degrade I_G without I_D degradation, then long stress to degrade I_D
Outline

1. Motivation
2. High-power and high-temperature stress experiments
3. An improved approach
4. Conclusions
DC Experiment : Improved Approach

» **Phase 1**: degrade I_G without significant I_D degradation

• Short stress period

 o $T_{\text{base}} = 50$–220 °C, in 20 °C steps

 o Stress time: 6 minutes
Phase 1: degrade I_G without significant I_D degradation

- Short stress period
 - $T_{\text{base}} = 50-220 \, ^\circ\text{C}$, in 20 °C steps
 - Stress time: 6 minutes

Phase 2: degrade I_D without further I_G degradation

- Longer stress period
 - T_{base}: from 120 °C, increase in steps
 - Stress time: 24 hours
A Typical Experiment (Phase 2)

High-power stress: $V_{DS} = 40$ V, $I_D = 100$ mA/mm, $T_{base} = 120 \degree C - 215 \degree C$, 24 hours/step

During phase 1:

$|I_{Goff}|$ increases by 2 orders of magnitude; I_{Dmax} decreases by 3%
A Typical Experiment (Phase 2)

High-power stress: $V_{DS} = 40\, V$, $I_D = 100\, mA/mm$, $T_{base} = 120\, ^\circ C - 215\, ^\circ C$, 24 hours/step

During phase 1:
- $|I_{Goff}|$ increases by 2 orders of magnitude; I_{Dmax} decreases by 3%

During phase 2:
- $|I_{Goff}|$ stays at saturated level ($\sim 0.5\, mA/mm$)
- I_{Dmax} degradation shows thermally activated characteristics
Activation Energies of Degradation Rates

$\ln(1/\text{slope}) = 1/kT_{\text{channel}}$ (eV$^{-1}$)

- R_D: $E_a = 0.84$ eV
- $I_{D_{\text{max}}}$: $E_a = 1.04$ eV

Outer loop data (long detrapping)
Activation Energies of Degradation Rates

E_a for $I_{D_{\text{max}}}$ close to values reported on similar technologies in conventional long term experiments

R_D: $E_a = 0.84$ eV

$I_{D_{\text{max}}}$: $E_a = 1.04$ eV
Activation Energy for Drain Current Degradation from Literature

<table>
<thead>
<tr>
<th>Reference</th>
<th>Bias conditions</th>
<th>Temperature range</th>
<th>Activation energy E_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Singhal, et al. IRPS 2006</td>
<td>$V_{DS}=28$ V</td>
<td>$T_j=260, 285, 310 , ^\circ C$</td>
<td>1.7 eV</td>
</tr>
<tr>
<td></td>
<td>$I_{DS}=64$ mA/mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Saunier, et al. DRC 2007</td>
<td>$V_{DS}=40$ V</td>
<td>$T_j=260, 290, 320 , ^\circ C$</td>
<td>1.05 eV</td>
</tr>
<tr>
<td></td>
<td>$I_{DS}=250$ mA/mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Zanoni, et al. Microwave</td>
<td>$V_{DS}=40$ V</td>
<td>$T_j=200, 245, 293 , ^\circ C$</td>
<td>0.68 eV - 1.58 eV</td>
</tr>
<tr>
<td>Integrated Circuits Conference 2009</td>
<td>$I_{DS}=167$ mA/mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Malbert, et al. IRPS 2010</td>
<td>$V_{DS}=25$ V</td>
<td>$T_j=150, 175, 275,$</td>
<td>0.8 eV – 1.2 eV</td>
</tr>
<tr>
<td></td>
<td>$I_{DS}=417$ mA/mm</td>
<td>$320 , ^\circ C$</td>
<td></td>
</tr>
<tr>
<td>J. Joh, et al. IRPS 2011</td>
<td>$V_{DS}=40$ V</td>
<td>$T_j=75, 100, 125,$</td>
<td>1.12 eV</td>
</tr>
<tr>
<td></td>
<td>$V_{GS}=-7$ V</td>
<td>$150 , ^\circ C$</td>
<td></td>
</tr>
<tr>
<td>This work</td>
<td>$V_{DS}=40$ V</td>
<td>$T_j=223, 249, 269,$</td>
<td>1.04 eV</td>
</tr>
<tr>
<td></td>
<td>$I_{DS}=100$ mA/mm</td>
<td>$289, 296, 302 , ^\circ C$</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. High-power and high-temperature stress experiments
3. An improved approach
4. Conclusions
Conclusions

• Two-phase experiment: separates I_G and I_D degradation in GaN HEMTs under high-power and high-temperature stress

• Two mechanisms exist:
 - I_G degrades first and eventually saturates
 - I_D degrades after I_G degradation is saturated

• Demonstrated new technique to extract E_a from measurements on a single device

• E_a for permanent $I_{D_{\text{max}}}$ degradation rate: 0.95-1.05 eV