A Test Structure to Characterize Nano-Scale Ohmic Contacts in III–V MOSFETs

Wenjie Lu, Alex Guo, Alon Vardi, and Jesús A. del Alamo, Fellow, IEEE

Abstract—We propose and demonstrate a novel test structure to characterize the electrical properties of nano-scale metal–semiconductor contacts. The structure is in essence a two-port transmission line model (TLM) with contacts in the nanometer regime. Unlike the conventional TLM, two types of Kelvin measurements are possible. When performed on devices with different contact spacing, this allows the extraction of the contact resistance, the semiconductor sheet resistance, and the metal sheet resistance. For this, a 2-D distributed resistive network model has been developed. We demonstrate this technique in Mo/n+InGaAs contacts with contact lengths from 19 to 450 nm where we have measured an average contact resistivity of 0.69 ± 0.3Ω · μm². For relatively long contacts (>110 nm), this corresponds to an extremely small contact resistance of 6.6 ± 1.6 Ω · μm.

Index Terms—Nano contacts, TLM, contact resistivity, III–V MOSFET.

I. INTRODUCTION

THE III–V MOSFET is one of the most promising technologies to extend Moore’s law beyond the limits of Si [1], [2]. In these devices, contact resistance remains a great challenge. At the insertion point, III-V logic transistors must have contacts in the 10–15 nm length range while delivering a total source resistance of 50 Ω · μm [1], [3]. To meet this goal, the metal to semiconductor contact resistivity ρ_c needs to be lower than 0.5 Ω · μm². Low values of ρ_c for contacts on n+InGaAs between 0.4 and 3.2 Ω · μm² have been reported [4]–[7]. Currently, the contact resistance in lateral devices is mostly extracted using a TLM structure [8] or a four-terminal Kelvin test structure [9]. In a TLM, the contacts are very large, they are separated by a distance in the scale of microns and the metal resistance is neglected. However, when dealing with nano-scale contacts for future CMOS, we need a more accurate test structure capable of extracting extremely small values of contact resistance on very small contacts where the metal resistance can be significant. Addressing this need is the goal of this letter.

In this letter, we propose a new two-port TLM structure with nano-scale contacts separated by nanometer-range distances.

Manuscript received November 13, 2013; revised December 11, 2013; accepted December 13, 2013. Date of publication January 9, 2014; date of current version January 23, 2014. This work was supported in part by the Focus Center for Materials, Structures and Devices, in part by SRC, and in part by Intel Corporation. The review of this letter was arranged by Editor M. Passlack.

The authors are with the Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: wenjie@mit.edu).

Color versions of one or more of the figures in this letter are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LED.2013.2295328

II. NANO-TLM DESIGN AND MODELING

We model the structure through a 2D distributed circuit network. The model allows the simultaneous extraction of the contact resistance, R_c, the semiconductor sheet resistance, R_{sh}, and the metal sheet resistance, R_{shm}. The proposed approach is demonstrated by fabricating Mo nano-contacts on n+InGaAs heterostructures where we have extracted an average contact resistivity as low as 0.69 Ω · μm². This matches the state-of-the-art in this metal/semiconductor system [4]–[7]. The proposed test structure and model is not limited to III-V MOSFETs and can be used to analyze nano-scale contacts in any material system.

Fig. 1(a) shows a schematic of our proposed nano-TLM test structure. The shaded area indicates the active semiconductor region, on which there are two parallel thin metal contacts of length L_c, width W, separated by a distance L_d. A unique aspect of this structure is that the two nano-scale metal lines can be contacted at both ends separately. This enables the two Kelvin measurement schemes illustrated in Fig. 1(b). $R_{||}$, the parallel terminal resistance, is typical of the traditional TLM structure. This structure additionally allows the measurement of R_x, the cross terminal resistance. The combination of $R_{||}$ and R_x enables accurate extractions of R_c, R_{sh}, and R_{shm}.

In actual measurements, the forcing and sensing ports are interchanged so that four sets measurements per elemental test structure can be performed.

Fig. 2 shows a distributed circuit representation of the intrinsic structure of Fig. 1(a). Since Kelvin measurements eliminate the resistance of the extrinsic metal lines, pads and probes, these elements need not be modeled. However, unlike conventional TLMs in which the metal resistance in the
Intrinsic device is not modeled, here it is taken into account. In Fig. 2(a), d_{rm} is the elemental longitudinal resistance of themetal line given by:

$$d_{rm} = \frac{R_{shm}}{L_c} dx$$ \hspace{1cm} (1)

d$_g$ is the elemental metal to metal conductance through the contacts and the semiconductor. Referring to the cross-sectional view of the nano-TLM structure of Fig. 2, d_g can be expressed as:

$$d_g = \frac{1}{R_{TLM}} dx$$ \hspace{1cm} (2)

where R_{TLM} is given as in the conventional TLM $[8]$

$$R_{TLM} = 2R_c + R_{sh} \cdot L_d$$ \hspace{1cm} (3)

here R_c is the normalized contact resistance. An analysis of the distributed model of Fig. 2 yields the following expressions for the terminal resistances defined in Fig. 1(b):

$$R_{||} = \frac{R_{TLM}}{L_{Tx}} \csc h \left(\frac{W}{L_{Tx}} \right)$$ \hspace{1cm} (4)

$$R_x = \frac{R_{TLM}}{2L_{Tx}} \left[\csc h \left(\frac{W}{L_{Tx}} \right) + \coth \left(\frac{W}{L_{Tx}} \right) \right] - \frac{R_{shm} W}{2L_c}$$ \hspace{1cm} (5)

where L_{Tx} is thetransfer length in the x direction:

$$L_{Tx} = \frac{L_c \cdot R_{TLM}}{2R_{shm}}$$ \hspace{1cm} (6)

As R_{shm} goes to zero, both (4) and (5) converge to R_{TLM}/W, which coincides with the classic normalized TLM result.

Fig. 3(a) shows model predictions for $R_{||}$ and R_x as a function of contact separation for different contact lengths. In long contacts, $R_{||}$ and R_x approach each other. In short contacts, however, R_x drops below $R_{||}$ due to the negative term in (5) which captures the voltage drop along the thin metal line.

The model provides guidance to test structure design for accurate extraction of the contact resistance. In general, one would like to have many test structures with identical L_c and different L_d. In particular, one needs: (1) a thick metal layer to minimize R_{shm}, (2) small values of L_d to reduce the impact of R_{sh}, and (3) a small value of W to also mitigate the impact of R_{shm}. The model above suggests that W should be on the order of L_{Tx} which in our system is in the range of 1–4 μm. Reasonably small W also makes the mesa alignment easy. In our devices we have selected $W = 3$ μm.

III. EXPERIMENTS

We have demonstrated the proposed nano-TLM structure in the Mo/n$^+$-In$_{0.53}$Ga$_{0.47}$As (20 nm thick, Si-doped, $N_D = 1 \times 10^{19}$ cm$^{-3}$) system. We first sputter 60 nm Mo onto the clean fresh semiconductor surface. This metal-first approach has been found to give outstanding contact resistance in InGaAs HEMTs and MOSFETs $[10]$, $[11]$. The Mo nano-contacts are defined by E-beam lithography followed by RIE. The entire structure is then covered by CVD SiO$_2$ and the mesas are patterned and isolated by RIE. The depth of mesa etch is 130 nm, which is sufficient for current confinement since only the top 20 nm cap layer is conductive. After pad formation, the structure is annealed at 350 $^\circ$C in N$_2$ for 1 min. We have fabricated test structures with contact lengths in the 19 to 450 nm range and contact spacings between 1.4 μm and below. Fig. 3(b) shows a test structure with 19 nm Mo contacts. All the relevant dimensions are measured by scanning electron microscope in the finished devices for accurate analysis.

In each elemental test structure, the four Kelvin measurements mentioned above are performed. The discrepancy in the two measurements of $R_{||}$ or R_x is less than 1%. From measurements of test structures with identical nominal L_c and different L_d (we call this a “set”), using a nonlinear least-square fitting program, we extract the values of R_c, R_{sh} and R_{shm} that minimize the error. For accurate extraction, $R_{||}$
and R_∞ are fitted simultaneously. Examples from three sets of test structures with $L_c = 416, 95,$ and 19 nm are shown in Fig. 4(a). Even for relatively large 95 nm contacts, there is a remarkable split between the two measurement schemes, $R_{||}$ and R_X, and they split further for smaller contacts. Moreover, while $R_{||}$ is always positive, R_X can become negative for small contacts, consistent with the prediction of the model in Fig. 3(a).

Since we expect non-uniformities in test structure fabrication, we allow R_{sh} and R_{shm} to change from test structure set to set. The obtained values of R_{sh} and R_{shm} have average values of 54 Ω/\square and 1.2 Ω/\square, and standard deviations of 4.3 Ω/\square and 0.2 Ω/\square, respectively. To verify the accuracy of our extractions, we also obtained R_{sh} and R_{shm} from conventional TLMs and Van der Pauw structures elsewhere on the sample. The average discrepancy of R_{sh} and R_{shm} are 10% and 16% across the sample.

Fig. 4(b) shows the dependence of Mo/n$^+$-InGaAs contact resistance on contact length obtained in 30 sets of test structures, a collective of 180 nano-TLM devices. For relatively long contacts, an extremely small average R_c of test structures with L_c over, while R and R_c for small contacts, consistent with the prediction of the model in Fig. 3(a).

IV. CONCLUSION

We have proposed a new two-port TLM test structure to characterize nano-scale contacts. We demonstrate this concept in Mo/n$^+$-InGaAs contacts with contact lengths in the 19–450 nm range. With the help of a 2D distributed resistive circuit network, we have extracted the contact resistance of contacts as short as 19 nm. Our entire data set is well described by a contact resistivity of $\rho_c = 0.69 \pm 0.3 \ \Omega \cdot \mu m^2$ which is close to the requirements for future nanometer-scale CMOS.

ACKNOWLEDGMENT

Device fabrication was carried out at the Microsystems Technology Laboratories and the Electron Beam Lithography Facility at MIT. The author would like to thank useful discussions with Prof. D. A. Antoniadis and J. Lin.

REFERENCES