Anomalous Source-side Degradation of InAlN/GaN HEMTs under ON-state Stress

Yufei Wu, Jesús A. del Alamo
Microsystems Technology Laboratories, Massachusetts Institute of Technology
October 04, 2016

Sponsor: NRO
Contract No. D11 NRO000-13C0309
Collaborator: Jose Jimenez (Qorvo)
Outline

1. Motivation
2. Source-side degradation under ON-stress
3. Gate leakage current and its temperature dependence
4. Positive gate stress
5. Conclusions
Motivation: InAlN as barrier

- High spontaneous polarization in InAlN \rightarrow high 2DEG density
- InAlN thickness scaling \rightarrow gate length scaling \rightarrow W- and V-band applications

<table>
<thead>
<tr>
<th></th>
<th>$\text{Al}{0.2}\text{Ga}{0.8}\text{N}/\text{GaN}$</th>
<th>$\text{In}{0.17}\text{Al}{0.83}\text{N}/\text{GaN}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔP_0 (e\cdotcm$^{-2}$)</td>
<td>6.5×10^{12}</td>
<td>2.7×10^{13}</td>
</tr>
<tr>
<td>P_{piezo} (e\cdotcm$^{-2}$)</td>
<td>5.3×10^{12}</td>
<td>0</td>
</tr>
<tr>
<td>P_{total} (e\cdotcm$^{-2}$)</td>
<td>1.2×10^{13}</td>
<td>2.7×10^{13}</td>
</tr>
</tbody>
</table>

[J. Kuzmik, EDL 2001]

$\text{In}_{0.17}\text{Al}_{0.83}\text{N}$ lattice matched to GaN \rightarrow Potentially better reliability!
Motivation: InAlN as barrier

InAlN/GaN HEMTs
• W-band
• E-mode

Four gate geometries:
• $W_g = 8 \times 25 \, \mu m$
• $W_g = 8 \times 50 \, \mu m$
• $W_g = 2 \times 25 \, \mu m$
• $W_g = 2 \times 50 \, \mu m$

Thermal models available

[Saunier, CSICS 2014]
High-V_{DS}-high-I_D stress

Stress and characterization conditions:

- $V_{DS,\text{stress}} = 25\ \text{V}$, $I_{D,\text{stress}} = 400\ \text{mA/mm}$ ($V_G \sim 1.5\ \text{V}$), 5 mins, RT ($T_j \sim 136\ \text{°C}$)
- Characterization: @ 25 °C after thermal detrapping

![Graph showing I_D vs V_{DS} with $V_G = 2\ \text{V}$](image)

![Graph showing I_D vs V_{GS} with $V_{DS} = 0.1\ \text{V}$](image)

Permanent degradation:
- Significant $I_{D,\text{max}}$ degradation
- $\Delta V_T > 0$
- Significant $I_{D,\text{off}}$ degradation
High-V_D-high-I_D stress

After thermal detrapping, gate current degradation:

- Large increase in I_G after stress
- After stress: $I_G = I_S >> I_D$ in forward and reverse bias
- Source-side damage unexpected!
- Uncommon but previously observed in AlGaN/GaN HEMTs [J. Joh, IEDM 2010]
Temperature dependence of I_G and I_D

Before stress:
- For moderate V_{GS}, negative T coefficient \rightarrow thermionic emission limited current
- I_S behaves similar to I_G

After stress:
- Significantly reduced T dependence for I_G and I_S
- I_D less affected \rightarrow degradation on source side
HRTEM of a virgin device

Virgin device
drain side

Virgin device
source side

Passivation

InAlN

GaN

AlN

Gate metal

Residual oxide?

Gate recessed to the AlN interlayer
HRTEM of stressed device

Disordered region in GaN channel at gate edge on source side
Hypothesis for Damage

High $V_{DS,\text{stress}}$ + high $I_{D\text{stress}} \rightarrow$ high $I_{G\text{stress}}$ too

\rightarrow high I_{GS}

\rightarrow high T_j

\rightarrow high electric field across AlN barrier on source side

Conditions favor defect formation in AlN barrier on source side $\rightarrow I_{GS} \uparrow$

Also, gate sinking $\rightarrow \Delta V_T > 0$
Positive V_G step-stress-recovery experiment

Stress and characterization conditions:

- $V_{GS,\text{stress}} = 0 - 2.5$ V, $V_{DS,\text{stress}} = 0$ V, step = 0.1 V, RT ($T_j \sim 48$ °C)
- Characterization: @ 25 °C after thermal detrapping

Permanent degradation:

- Significant $I_{D_{\text{max}}}$ degradation
- $\Delta V_T > 0$
- Significant $I_{D_{\text{off}}}$ degradation
Time evolution of $I_{D\text{max}}$ and $I_{G\text{off}}$

Stress conditions:
- $V_{DS,\text{stress}} = 0$ V, $V_{GS,\text{stress}} = 0.1 – 2.5$ V in 0.1 V steps
- stress time = recovery time = 150 s; characterization every 15 s
- RT

![Graph showing $I_{G\text{off}}$ as a function of time and stress voltage](image)

- $|I_{G\text{off}}|$ starts to increase from $V_{GS,\text{stress}} \approx 1.7$ V \rightarrow trap generation in AlN
- $I_{D\text{max}}$ starts to severely degrade from $V_{GS,\text{stress}} \approx 2.3$ V \rightarrow gate sinking
Time evolution of $I_{G\text{stress}}$

Stress conditions:

- $V_{DS,\text{stress}} = 0$ V, $V_{GS,\text{stress}} = 0.1 – 2.5$ V in 0.1 V steps
- stress time = recovery time = 150 s; characterization every 15 s
- RT

\begin{itemize}
 \item $I_{G\text{stress}}$ increase becomes significant for $V_{GS,\text{stress}} \geq 2.3$ V
\end{itemize}
Gate current degradation

After thermal detrapping, gate current degradation:

- Symmetric degradation: $I_S \approx I_D \approx I_G/2$
- Reproduced degradation signature of high-V_{DS}-high-I_D stress: high forward V_G leads to increase in I_G
HRTEM of stressed device

Disordered region in GaN channel at gate edge on drain side

Disordered region in GaN channel at gate edge on source side
Conclusions

• Permanent degradation after High-V_{DS}-high-I_D stress:
 - $I_{Goff} \uparrow\uparrow \rightarrow$ Defect formation in AlN barrier on source side
 - $\Delta V_T > 0$, $I_{Dmax} \downarrow\downarrow \rightarrow$ Gate sinking
 - Affects source side

• Positive gate stress:
 - Reproduced degradation signature of high-V_{DS}-high-I_D stress:
 - $I_{Goff} \uparrow\uparrow$, $\Delta V_T > 0$, $I_{Dmax} \downarrow\downarrow$
 - $I_S \sim I_D \sim I_G/2 \rightarrow$ Symmetric degradation on source and drain side
Thank you & Questions?