Nanometer-scale III-V 3D MOSFETs

J. A. del Alamo, W. Lu, X. Zhao, D. Choi and A. Vardi

Microsystems Technology Laboratories
Massachusetts Institute of Technology

ALE 2017
Denver, CO, July 15-18, 2017

Acknowledgements:
• Students and collaborators: D. Antoniadis, X. Cai, J. Lin
• Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung
• Labs at MIT: MTL, EBL
Moore’s Law

Moore’s Law = exponential increase in transistor density

2016:
Intel 22-core Xeon Broadwell-E5
7.2B transistors
Moore’s Law

How far can Si support Moore’s Law?
The problem:

Transistor scaling → Voltage scaling → Performance suffers

Supply voltage:

Transistor current density:

What can we do about this?
Moore’s Law: it’s all about MOSFET scaling

1. New device structures with improved scalability:

- Planar bulk MOSFET
- Thin-body SOI MOSFET
- FinFET
- Nanowire MOSFET

2. New materials with improved transport characteristics:

- n-channel: Si → Strained Si → SiGe → InGaAs
- p-channel: Si → Strained Si → SiGe → Ge → InGaSb
Planar Si and InGaAs MOSFET Benchmark

n-MOSFETs in Intel’s nodes at nominal voltage

Comparisons always fraught with danger…

- Recent rapid progress thanks to ALD gate oxide
- Performance exceeds Si
Bottom-up InGaAs FinFETs

Aspect-Ratio Trapping
Fiorenza, ECST 2010

Epi-grown fin inside trench

Waldron, VLSI Tech 2014
InGaAs FinFETs @ MIT

Key enabling technologies: BCl$_3$/SiCl$_4$/Ar RIE + digital etch

- Sub-10 nm fin width
- Aspect ratio > 20
- Vertical sidewalls

Vardi,
DRC 2014,
EDL 2015,
IEDM 2015
InGaAs FinFETs @ MIT

- Si-compatible process
- Contact-first, gate-last process
- Fin etch mask left in place → double-gate MOSFET

Vardi, VLSI Tech 2016
Vardi, EDL 2016
Most aggressively scaled FinFET

$W_f=7$ nm, $L_g=30$ nm, $H_c=40$ nm (AR=5.7), EOT=0.6 nm:

At $V_{DS}=0.5$ V:

- $g_m=900$ μS/µm
- $R_{on}=320$ Ω.µm
- $S_{sat}=100$ mV/dec

Vardi, EDL 2016
InGaAs FinFET benchmarking

- First InGaAs FinFETs with $W_f<10$ nm
- Doubled g_m over earlier InGaAs FinFETs
- Short of Si FinFETs → sidewall quality?
Vertical nanowire MOSFET: ultimate scalable transistor

Vertical NW MOSFET:
→ uncouples footprint scaling from L_g, L_{spacer}, and L_c scaling
InGaAs Vertical Nanowires @ MIT

Key enabling technologies:

- **RIE** = BCl$_3$/SiCl$_4$/Ar chemistry
- **Digital Etch (DE)** =
 self-limiting O$_2$ plasma oxidation + H$_2$SO$_4$ or HCl oxide removal

- Radial etch rate = 1 nm/cycle
- Sub-20 nm NW diameter
- Aspect ratio > 10
- Smooth sidewalls

Zhao, IEDM 2013
Zhao, EDL 2014
Zhao, IEDM 2014
InGaAs VNW-MOSFETs by top-down approach @ MIT

Starting heterostructure:

- n^+ InGaAs, 70 nm
- i InGaAs, 80 nm
- n^+ InGaAs, 300 nm

n^+: 6×10^{19} cm$^{-3}$ Si doping

Top-down approach: flexible and manufacturable
NW-MOSFET I-V characteristics: D=40 nm

Single nanowire MOSFET:
- $L_{ch} = 80$ nm
- 3 nm Al$_2$O$_3$ (EOT = 1.5 nm)
- $g_{m,pk} = 720$ μS/µm @ $V_{DS} = 0.5$ V
- $S_{lin} = 70$ mV/dec, $S_{sat} = 80$ mV/dec
- DIBL = 88 mV/V

Zhao, CSW 2017
Benchmark with Si/Ge VNW MOSFETs

Peak g_m of InGaAs ($V_{DS}=0.5$ V), Si and Ge VNW MOSFETs

- InGaAs competitive with Si
- Need to demonstrate VNW MOSFETs with $D<10$ nm
InGaAs VNW Mechanical Stability for D<10 nm

8 nm InGaAs VNWs after 7 DE cycles:

8 nm InGaAs VNWs: Yield = 0%

Broken NW

Difficult to reach 10 nm VNW diameter due to breakage
InGaAs VNW Mechanical Stability for D<10 nm

Difficult to reach 10 nm VNW diameter due to breakage

8 nm InGaAs VNWs: Yield = 0%

Water-based acid is problem:

Surface tension (mN/m):
- Water: 72
- Methanol: 22
- IPA: 23

Solution: alcohol-based digital etch
Alcohol-Based Digital Etch

8 nm InGaAs VNWs after 7 DE cycles:

10% HCl in DI water
Yield = 0%

10% HCl in IPA
Yield = 97%

Alcohol-based DE enables D < 10 nm

Lu, EDL 2017
D=5.5 nm VNW arrays

10% H_2SO_4 in methanol

- H_2SO_4:methanol yields 90% at D=6 nm!
- Viscosity matters: methanol (0.54 cP) vs. IPA (2.0 cP)
InGaAs Digital Etch

First demonstration of D=5 nm diameter InGaAs VNW
(Aspect Ratio > 40)
InGaAs Vertical Nanowires on Si by direct growth

Selective-Area Epitaxy (SAE) Technique

Vapor-Solid-Liquid (VLS) Technique

InAs NWs on Si by SAE

VNW MOSFETs: path for III-V integration on Si for future CMOS
Vertical nanowire MOSFET for 5 nm node

Vertical NW:

- power, performance and area gains w.r.t. Lateral NW or FinFET

Yakimets, TED 2015
Bao, ESSDERC 2014

30% area reduction in 6T-SRAM
19% area reduction in 32 bit multiplier
Conclusions

1. Great recent progress on planar, fin and nanowire InGaAs MOSFETs

2. Device performance still lacking for 3D architecture designs

3. III-V Vertical-Nanowire MOSFETs: most likely architecture for future integration with Si

4. Many, MANY issues to work out:
 - sub-10 nm fin/nanowire fabrication, self-aligned contacts, device asymmetry, introduction of mechanical stress, V_T control, sidewall roughness, device variability, BTBT and parasitic HBT gain, oxide trapping, self-heating, reliability, NW survivability, co-integration on n- and p-channel devices on Si, interface states, metal routing, contact resistance < 10^{-9} Ω.cm², off-state leakage, TDDB, etc....