Now we’re moving into the part of the course that for many of you will be the most fun: design of feedback systems.

Problem: How do we translate closed-loop specifications into specifications on our loop transmission?

CLASS EXERCISE:

Let’s say that you’re asked to control a plant as shown:

Requirements:
1. Zero steady-state error in response to a step
2. Loop crossover ω_c no higher than 100 rps.

→Design a compensator $H(s)$ that meets these specifications.

Specs that we care about in feedback systems
1) Command following ⇒ the extent to which
\[
\frac{C(s)}{R(s)} = \frac{L(s)}{1 + L(s)} \approx 1
\]

Good command following requires that \(|L(j\omega)| >> 1\) over the frequency range of interest.

2) Small steady-state error/small dynamic tracking error

⇒ extent to which
\[
\frac{E(s)}{R(s)} = \frac{1}{1 + L(s)} << 1
\]

requires that \(|L(j\omega)| >> 1\) over frequency range of interest.

3) Disturbance Rejection

EXAMPLE: Rocket sled buffeted by wind.

\[\omega(t) \{\text{force of wind}\}\]

The wind in this case is a disturbance that we would like to reject.

Returning to general case, we want \(\frac{C(s)}{D(s)}\) to be small, so disturbance rejection is the extent to which

\[
\frac{C(s)}{D(s)} = \frac{1}{1 + L(s)} << 1
\]

want \(|L(j\omega)| >> 1\) over freq. range of interest.
4) Noise Rejection

Our sensors aren’t perfect: they give us the data that we want, plus some noise. Noise is always specified as a spectral density, e.g. the noise voltage associated with a resistor is \(4kTR\Delta f\). The larger the bandwidth of your system, the larger the RMS noise voltage you’re going to see at your output.

→This is one reason why extra bandwidth is bad←

since \(\frac{C(s)}{N(s)} = \frac{L(s)}{1 + L(s)}\), we want \(|L(j\omega)| << 1\) outside the frequency band of interest.

Bode Obstacle Course

Command-following and disturbance-rejection requirements produce inequalities like:

\[|L(j\omega)| > A, \text{ for } \omega < \omega_1 \]

Noise rejection specs might be given as

\[|L(j\omega)| < A_2, \text{ for } \omega > \omega_2 \]

We can draw a Bode Obstacle course as follows (see next page):
DESIGN EXAMPLE:

Design in acceptable \(L(s) \) that results in the following closed-loop performance specs:

1. Steady-state error in response to a ramp less than \(10^{-2} \)
2. Disturbance rejection better than 10:1 for frequencies below 10 rps
3. Closed-loop bandwidth > 50 rps
4. Magnitude peaking \(M_p < 1.4 \)
5. Noise rejection better than 40dB above 1000 rps

How does this guide our design?

1. Steady-state error in response to a ramp is bounded, but not zero. This implies a pole at origin.

\[
\lim_{s \to 0} \left(\frac{1}{s^2} \right) \frac{1}{1 + \frac{k}{s} F(s)} = \lim_{s \to 0} \frac{1}{s} \frac{1}{1 + kF(s)} \]

\[
= \frac{1}{1 + kF(0)}
\]
For \(F(s) \), if there are no singularities at the origin, we are free to assume \(F(0) = 1 \). As we fill in the details of \(F(s) \), we do so in the following fashion.

\[
F(s) = \frac{(\tau_{z_1}s+1)(\tau_{z_2}s+1)\cdots(\tau_{z_N}s+1)}{(\tau_{p_1}s+1)(\tau_{p_2}s+1)\cdots(\tau_{p_M}s+1)} = \prod_{i=1}^{N}(\tau_{z_i}s+1) \prod_{j=1}^{M}(\tau_{p_j}s+1)
\]

This way, \(F(0)=1 \).

1) \(\frac{1}{1+k} < 0.01 \rightarrow k > 100 \)

2) \(|L(j\omega)| > 10 \) for \(\omega < 10 \) rps

3) \(\omega_c > 50 \) rps

4) \(\phi_m > 45^\circ \)

5) \(|L(j\omega)| < 0.01 \) for \(\omega > 10^3 \) rps

As a first stab, let’s try \(L(s) = \frac{100}{s} \)
What to do? We need another pole somewhere in order to meet our high-frequency spec. But if we put the pole too low (in frequency), we’ll lower ω_c and our phase margin.

What about a pole right at 100 rps? Using asymptotes on the Bode Plot, that would fix ω_c right at 100 rps, and the phase margin would be 45°…

$$\text{Try } L(s) = \frac{100}{s (0.01s + 1)}$$

Actual numbers: $\omega_c \approx 80$ rps, $\phi_m \approx 50$ rps