Photoluminescence Intensity Technique for Oxide-Semiconductor Interface Characterization

Matthias Passlack
TSMC R&D, Europe B.V.
Leuven Belgium

June 8, 2011
PL-Intensity: Outline

Introduction
 • History & Rationale
 • Physics: Capture/emission vs. recombination

Experimental Implementation
 • Experimental setup
 • Test structure design

Results
 • Interface quality screening
 • Models, D_{it}, S and σ

Impact and Outlook
 • Instrumental in successful GaAs MOSFET development
 • Extension to small bandgap channel material
PL-Intensity: Outline

Introduction
 • History & Rationale
 • Physics: Capture/emission vs. recombination

Experimental Implementation
 • Experimental setup
 • Test structure design

Results
 • Interface quality screening
 • Models, Dit, S and σ

Impact and Outlook
 • Instrumental in successful GaAs MOSFET development
 • Extension to small bandgap channel material
PL-Intensity: History and Rationale

Originally developed for dielectrics on GaAs
 • Early developments at Bell Labs and Hokkaido University
 • Experimental setup in final form in Motorola in 1996
 • Model for D_{it} extraction on GaAs since 1998

Difficulty to interpret capture/emission data (e.g. C-V, G-V) on wider bandgap semiconductors
 • Very long capture/emission time constants (100 s) at GaAs midgap at room temperature (RT)
 • Midgap Fermi level pinning is single dominant issue on GaAs but is not detectable in RT ac measurements
 • Under steady-state deep depletion, traps are not observable at the capacitors terminals
 • Dielectric leakage currents interfere with capture/emission data

Advantages
 • Not afflicted with ambiguities of capture/emission data
 • Works for dielectric of any thickness and only requires minor band offsets for carrier confinement
 • Requires no device manufacturing (perfect for screening)
PL-Intensity: Physics

Carrier Capture/Emission τ

- τ is exponential function of E_T
- Interface state density $D_{it} = f (E_T)$
PL-Intensity: Physics

Carrier Capture/Emission τ

- τ is exponential function of E_T
- Interface state density $D_{it} = f(E_T)$

Carrier Recombination $\tau_{n/p}$

- $\tau_{n/p} \neq f$ (trap energy E_T)
- D_{it} integrated over bandgap

Dielectric

Semiconductor

- Admittance - (Capacitance/Conductance)
- Voltage

Active Layer 1.5 μm

- Photoluminescence Intensity

Active Layer

- Trap

Electrical

E_c

E_F

E_v

I_0'

I_{PL}

I_{rad}

E_{F_n}

E_{F_p}

Buffer (0.2 μm)

Buffer (0.2 μm)

- Trap

- Interface state density D_{it}
PL-Intensity: Physics

Laser Excitation of Intensity I_0

Photoluminescence of Intensity I_{PL}

$\eta = \frac{I_{PL}}{I_0} \Rightarrow N_{it} (D_{it} \text{ integrated over bandgap})$

Carrier Lifetime $\tau_{n/p} = \frac{1}{\sigma v_{th} N_{it}} \neq f(E_T, n_i)$

Unique Tool to Screen Interfaces for Device Quality
PL-Intensity: Outline

Introduction
• History & Rationale
• Physics: Capture/emission vs. recombination

Experimental Implementation
• Experimental setup
• Test structure design

Results
• Interface quality screening
• Models, Dit, S and σ

Impact and Outlook
• Instrumental in successful GaAs MOSFET development
• Extension to small bandgap channel material
PL-Intensity: Experimental Implementation

1996: Analysis of Electrical Interface Properties

- Laser
- Microscope
- Spectrometer
- CCD
- Probe Stage
- Telescope
- ND Filter
- Wheels
- Precision Aligned Optics

Photoluminescence Intensity
PL-Intensity: Experimental Implementation

Parameter:
Laser Power Density P_0'
7×10^3, 7×10^1, 8×10^{-1} W/cm2

Spectra integrated over wavelength for I_{PL} vs. P_0' plots
PL-Intensity: Test Structure Design

n⁻ GaAs Active Layer (1.5 µm): \(\tau_{\text{epi}} (\approx 100 \text{ ns}), \tau_{\text{rad}} \)

n⁺ GaAs Buffer (0.2 µm): \(\tau_{\text{epi}} \)

Undoped Alₐ₀.₄₅Ga₀.₅₅As (0.1 µm): \(\Delta E_c, \Delta E_v \)

n⁺ GaAs Buffer (0.2 µm): \(\tau_{\text{epi}} \)

n⁺ GaAs Substrate: \(\tau_{\text{sub}} (\approx 10\text{ns}) \)

Interface to be characterized

\(\tau_{\text{int}}, Q_{\text{int}} \Rightarrow N_{\text{it}} (D_{\text{it}}) \)

100% of photons are absorbed
Low doping for good \(\tau_{\text{int}}, Q_{\text{int}} \) resolution

High n⁺ doping screens AlGaAs/GaAs backside interface

AlGaAs layer screens substrate and substrate/epi interface effects (recombination) and confines generated carriers to active layer

n⁺ GaAs buffer layer provides flatband condition
Substrate/epi \(\tau_{\text{int}}, Q_{\text{int}} \)

Also suitable for capture/emission (C-V, G-V) analysis
PL-Intensity: Outline

Introduction
 • History & Rationale
 • Physics: Capture/emission vs. recombination

Experimental Implementation
 • Experimental setup
 • Test structure design

Results
 • Interface quality screening
 • Models, Dit, S and σ

Impact and Outlook
 • Instrumental in successful GaAs MOSFET development
 • Extension to small bandgap channel material
PL-Intensity: Interface Quality Screening

Normalized Photoluminescence Intensity (arb. units)

MBE Grown GaAs Surface

Excitation Intensity (W/cm²)

10^7
10^6
10^5
10^4
10^3
10^2
10^-2
10^-1
10^0
10^1
10^2
10^3
10^4
PL-Intensity: Interface Quality Screening

Normalized Photoluminescence Intensity (arb. units) vs Excitation Intensity (W/cm²)

MBE Grown GaAs Surface

AlGaAs

Known Best Interface: AlGaAs/GaAs

Known Worst Interface: Native Oxide/GaAs
PL-Intensity: Interface Quality Screening

Normalized Photoluminescence Intensity (arb. units) vs. Excitation Intensity (W/cm²)

- MBE Grown GaAs Surface
 - AlGaAs

- Oxides, Nitrides on GaAs: Native Oxide Behavior

- Known Best Interface: AlGaAs/GaAs

- Known Worst Interface: Native Oxide/GaAs
PL-Intensity: Interface Quality Screening

Known Best Interface:
AlGaAs/GaAs

Device Quality Interface:
Ga$_2$O$_3$/GaAs

Oxides, Nitrides on GaAs:
Native Oxide Behavior

Known Worst Interface:
Native Oxide/GaAs

Normalized Photoluminescence Intensity (arb. units)

Excitation Intensity (W/cm2)

- MBE Grown GaAs Surface
- AlGaAs
- Ga$_2$O$_3$
- Native Oxide

- as-dep.
PL-Intensity: Interface Quality Screening

- **Known Best Interface:** AlGaAs/GaAs
- **Device Quality Interface:** Ga$_2$O$_3$/GaAs
- **Oxides, Nitrides on GaAs:** Native Oxide Behavior
- **Known Worst Interface:** Native Oxide/GaAs

Graph:
- **MBE Grown GaAs Surface**
- **AlGaAs**
 - H-passivated
 - as-dep.
- **Ga$_2$O$_3$**
 - as-dep.
- **Native Oxide**

Axes:
- **Normalized Photoluminescence Intensity (arb. units)**
- **Excitation Intensity (W/cm2)**
PL-Intensity: Interface Quality Screening

![Graph showing PL intensity vs. excitation power density for different materials.](image)

- **Normalized Photoluminescence Intensity (arb. units)**
- **Excitation Power Density \(P_0' \) (W/cm\(^2\))**

- Materials: GaAs, AlGaAs, H-passivated, Bulk \(\text{Ga}_2\text{O}_3 \), \(\text{GdGaO}_3/\text{Ga}_2\text{O}_3 \), \(\text{LaAlO}_3/\text{Ga}_2\text{O}_3 \), Native Oxide, \(\text{GdScO}_3/\text{Ga}_2\text{O}_3 \), \(\text{LaAlO}_3 \), \(\text{GdScO}_3 \).
PL-Intensity: Interface Quality Screening

- Normalized Photoluminescence Intensity (arb. units)
- Excitation Power Density P_0' (W/cm2)

- GaAs
- AlGaAs
- H-passivated
- Bulk Ga$_2$O$_3$
- Native Oxide
- Al$_2$O$_3$ (ALD)
- Al$_2$O$_3$ (e-beam)
- as-dep
PL-Intensity: Interface Quality Screening

<table>
<thead>
<tr>
<th>Dielectric on GaAs</th>
<th>Technique</th>
<th>Device quality</th>
<th>Not device quality</th>
<th>Native Oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga$_2$O$_3$</td>
<td>effusion, e-beam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In$_2$O$_3$</td>
<td>effusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GdGaO</td>
<td>effusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd$_2$O$_3$</td>
<td>effusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>effusion, e-beam, ALD*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta$_2$O$_3$</td>
<td>e-beam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si$_3$N$_4$</td>
<td>JVD*, CVD*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>e-beam, CVD*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlN</td>
<td>Effusion, sputter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>e-beam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO</td>
<td>effusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSZ</td>
<td>e-beam*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaAlO$_3$</td>
<td>e-beam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaGaO$_3$</td>
<td>effusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GdScO$_3$</td>
<td>e-beam</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ex-situ
Internal Quantum Efficiency η vs. Excitation Power Density P_0' (W/cm2)

- **AlGaAs/GaAs**
- **H Passivated Ga$_2$O$_3$/GaAs**
- **As deposited Ga$_2$O$_3$ on GaAs**
- **Air Exposed GaAs**

Midgap $D_{it} = 1.1 \times 10^{11}$ cm$^{-2}$ eV$^{-1}$

Midgap $D_{it} = 2.7 \times 10^{11}$ cm$^{-2}$ eV$^{-1}$

Symbols:
- Measured
- Simulated

Lines:
- Simulated (1d numerical drift-diffusion, also provides S and σ)

PL-Intensity: Models Dit, S, σ
PL-Intensity: Outline

Introduction
• History & Rationale
• Physics: Capture/emission vs. recombination

Experimental Implementation
• Experimental setup
• Test structure design

Results
• Interface quality screening
• Models, Dit, S and σ

Impact and Outlook
• Instrumental in successful GaAs MOSFET development
• Extension to small bandgap channel material
PL-Intensity: Impact and Outlook

Instrumental in successful development of GaAs MOSFET

- Enhancement mode NMOS ($V_t > 0$ V)
- Subthreshold swing 65 and 70 mV/dec for $L_g = 1$ and 0.1 μm
- g_m identical to ideal model ($D_{it} = 0$) predictions

Extension to small bandgap materials (InGaAs)

- Short- and mid-wavelength infrared (up to 3.5 μm)
- Detectors are expensive
- Optical instrumentation more problematic
- InGaAs lattice matched to InP ($\lambda = 1.68$ μm) done at IMEC
- $\text{In}_{0.2}\text{Ga}_{0.8}$As quantum well structure done at Bell Labs (1994)

Extension to quantum well structures

- Problematic because of additional nonradiative recombination sources at semiconductor/semiconductor interfaces
- Problematic because many design criteria shown on slide 11 cannot be met
- It is more practical to characterize dielectric/semiconductor interfaces on thicker layers when using PL-I
Further Reading

M. Passlack et al., "Insulator passivation of In_{0.2}Ga_{0.8}As-GaAs surface quantum wells," IEEE J. of Quantum Electronics, vol. 34, no. 2, pp. 307-310, 1998.
R.J.W. Hill et al., "Enhancement-mode GaAs MOSFETs with In_{0.3}Ga_{0.7}As channel, mobility over 5000 cm2/Vs and transconductance over 475 µS/µm," IEEE Electron. Dev. Lett., vol. 28, no. 12, pp. 1080-1082, 2007.